Environmental Quality CouncilProposed Chapter 1, Appendix H Rule

KC HARVEY

Soil & Water Resource Consulting

Overview

- My Background
- Soil and Water Chemistry Overview
- Comments on Appendix H

Who am I?

- President of KC Harvey, Inc.
- EVP/Chief Scientist of EnerCrest, Inc.
- M.S. Land Rehabilitation, B.S. Resource Conservation
- National Board Certification in Soil Science
- 28 years worldwide experience
- 10 years CBM experience CO, MT, WY
- 100s of CBM water management projects
- Performed multiple Section 20 analyses
- Invited by DEQ to participate on Section 20 committee

Who am I?

- I am an Applied Scientist
- What is an applied scientist and what do they do?

SOIL AND WATER CHEMISTRY REVIEW

Irrigation Water Suitability

- Excessive salinity (EC) in irrigation water can impact crop growth.
 - ✓ Excessive salt in soil make it harder for plants to pull water out of soil
- Excessive sodicity (SAR) in irrigation water can impact soil structure and infiltration / permeability.
 - ✓ The higher the salt content of the irrigation water or soil, the less impact from SAR

Salinity and Sodicity

- Effects seen long term (chronic exposure)
- Occasional contact:
 - ✓ No measurable change to soil infiltration
 - ✓ No measurable change to plant production

COMMENTS ON APPENDIX H

General Comments

- Relationships among salinity, sodicity, water, soil, and plants are dynamic
- Comments focused on CBNG development in the PRB
- Flexibility is important
 - ✓ Use for increasing production
 - ✓ Evolving opportunities for use of water
- Proposed rule is conservative and protective

Tier 1 EC Limits Are Conservative

- 100% California yield assumption
- Wyoming conditions overshadow effects of water salinity:
 - ✓ Cold climate and short growing season,
 - ✓ Low precipitation,
 - ✓ Low soil fertility,
 - ✓ Thinly developed soils with low moisture holding capacity,
 - ✓ Different agricultural practices than California.
- Applying pure irrigation water will not overcome Wyoming limitations & achieve California yield

Tier 1 EC Limits Are Conservative

USDA Salt Tolerance Database (CA)

- ✓ Ideal CA growing conditions different soil chemistry than WY
- ✓ CA-based 100% yield threshold for alfalfa of 2 dS/m in soil equates to a 1.3 dS/m (1,333 umhos/cm) in water

USDA Plant Materials Center at Bridger, Montana

- ✓ Yield thresholds based on research and experience in MT, WY, and Western Canada
- ✓ Saskatchewan field studies indicated no significant difference in yields in soils with EC of 4 dS/m or 8 dS/m (4000 umhos/cm or 8000 umhos/cm)
- ✓ The USDA Bridger Plant Materials Center selected a soil EC 100% yield tolerance level of 4 dS/m for alfalfa. This equates to a 2.7 dS/m effluent limit for EC

Tier 1 SAR Cap is Conservative

- SAR in water used to predict SAR of soil in equilibrium with water
 - ✓ SAR measurement meant to estimate exchangeable sodium percentage (ESP) measurement of the soil
 - ✓ Swelling type clay minerals will begin to swell at ESP of 15
- Handbook 60 (1954) says SAR of 12 approximates a soil ESP of 15
 - ✓ Based on analysis of 59 soil samples throughout western U.S.
- PRB data indicate SAR cap of 16 would be safe
 - ✓ Based on analysis of 382 soil samples from PRB indicate SAR over predicts ESP

2006 Suarez SAR Infiltration Study

- Results not applicable to Wyoming
- Soil used not representative of Tongue River soil clay content
- Soil structure destroyed during sample collection/preparation
 - ✓ Loss of soil structure and porosity will certainly lead to decreased infiltration rates
- Amount & rate of water applied not reflective of conditions
 - ✓ Intensity of test was1000 times greater than average thunderstorm event in Montana and Wyoming
 - ✓ Raindrop impact at this intensity and frequency will seal soil
- No statistically significant difference in alfalfa yield regardless of SAR

Tier 2 - Scenarios

- There is no Tier 2 comparison between managed irrigation with CBNG water and WYPDES discharge scenarios
- The managed irrigation scenarios described by Vance do not fall under Tier 2 process or a WYPDES permit.
- Tier 2 process is meant to derive conservative limits for unmanaged irrigation after discharge to channel
- Unmanaged application of CBNG water may occur during large storm events when water is diluted by natural runoff

Tier 2 – The Process

- 1. Determine that artificially or natural irrigation occurs downstream of proposed discharge
- 2. Sample soils from irrigated fields to determine average root zone EC
- 3. DEQ applies additional margin of safety to the average root zone EC of field(s)
- 4. Divide adjusted average root zone EC by the 1.5 concentration factor to estimate long-term water EC applied to field and establish EOP limit for EC
- 5. Apply Hanson equation at IMP to monitor SAR

Tier 2 – Composite Sampling

- Composite soil sampling is an accepted strategy by the WDEQ, U.S. EPA and scientists worldwide
- Describing and sampling soil profiles in pits is subject to extreme variation between field scientists
- Systematic compositing increases sample precision and allows for comparison between fields
- Landowners do not want soil pits! Less impact with Giddings soil coring
- This sampling approach was agreed to by all parties during initial drafting of Policy and has not been an issue during three years of public comment

Tier 2 – Root Zone or Surface?

- Plants that receive infrequent irrigation or rainfall depend on the entire root zone (Ayers and Westcot, 1985)
- Roots in the PRB typically exhibit depths greater than five feet
- Plants that receive frequent irrigation depend more on the surface soil (Ayers and Westcot, 1985)
- Surface soil EC fluctuates and is not a reliable longterm measurement of soil EC
- We must consider the entire root zone

Tier 2 – Real Data

- Based on 43 Tier 2 fields sampled to-date in the PRB:
- The average root zone (0-48") EC is 6.3 dS/m (6300 umhos/cm)
 - ✓ This is already higher than the agreed upon 100% yield thresholds for alfalfa (2 dS/m) and western wheatgrass (4.5 dS/m)
 - √ A soil exhibiting >4 dS/m is defined as saline
- Average root zone SAR ranges from 1.1 to 23 with an average of 9.2

Tier 2 – 1.5 Concentration Factor

- This refers to the equation: ECsoil = ECwater x 1.5
- So, for Tier 2, ECsoil / 1.5 = ECwater
- The 1.5 concentration factor from water to soil EC is appropriate and conservative
- 1.5 concentration factor is part of the California 100% yield thresholds
- The 1.5 concentration factor was agreed to by all parties:
 - ✓ Including UW during initial development and during Section 20 AUP public comment
 - ✓ Used in numerous Tier 2 and WYPDES analyses to date

Tier 2 – 1.5 Concentration Factor

- Soil EC profile can be used to estimate the long-term leaching fraction (Figure 2, Ayers and Westcot 1985)
- Leaching fraction can then be used to estimate the water to soil EC concentration factor (Table 3, Ayers and Westcot 1985)

Salinity profile expected to develop after long-term use of water of $EC_w = 1.0$ dS/m at various leaching fractions (LF) (Ayers and Westcot, 1985).

TABLE 3. CONCENTRATION FACTORS (X) FOR PREDICTING SOIL SALINITY (ECe)¹ FROM IRRIGATION WATER SALINITY (ECw) AND THE LEACHING FRACTION (LF)

		• •
Leaching Fraction (LF)	Applied Water Needed (Percent of ET)	Concentration Factor ²
0.05	105.3	3.2
0.10	111.1	2.1
0.15	117.6	1.6
0.20	125.0	1.3
0.25	133.3	1.2
0.30	142.9	1.0
0.40	166.7	0.9
0.50	200.0	0.8
0.60	250.0	0.7
0.70	333.3	0.6
0.80	500.0	0.6

¹ The equation for predicting the soil salinity expected after several years of irrigation with water of salinity ECw is: EC_e (dS/m) = EC_w (dS/m) x Concentration Factor

² The concentration factor is found by using a crop water use pattern of 40-30-20-10. (Ayers and Westcot, 1985).

Soil chemical analysis results for the Lower Dead Horse Creek Section 20 site investigation (KC Harvey, June 2008).

Field	Depth		Conductivity at 25°C (Ec _e)		Adsorption	Sodillim	I Janth At	I ima aci
	0 to 12	7.1	1.29		0.63	1.5		4.5
	12 to 24	7.3	3.62		1.4	2.2		4.3
Belus 1	24 to 36	7.4	5.45	4.5	5.2	5.0	5.4	4.2
	36 to 48	7.6	7.8		14	13		4.3
	48 to 60	7.8	9.25		19	15		4.2

Salinity profile expected to develop after long-term use of water of $EC_w = 1.0$ dS/m at various leaching fractions (LF) (Ayers and Westcot, 1985).

CONCENTRATION FACTORS (X) FOR PREDICTING SOIL SALINITY (ECe)¹ FROM IRRIGATION WATER SALINITY (ECw) AND THE LEACHING FRACTION (LF)

Leaching Fraction (LF)	Applied Water Needed (Percent of ET)	Concentration Factor ² (X)
0.05	105.3	3.2
0.10	111.1	2.1
0.15	117.6	1.6
0.20	125.0	1.3
0.25	133.3	1.2
0.30	142.9	1.0
0.40	166.7	0.9
0.50	200.0	8.0
0.60	250.0	0.7
0.70	333.3	0.6
0.80	500.0	0.6

¹ The equation for predicting the soil salinity expected after several years of irrigation with water of salinity ECw is: EC_e (dS/m) = EC_w (dS/m) x Concentration Factor

² The concentration factor is found by using a crop water use pattern of 40-30-20-10. (Ayers and Westcot, 1985).

Tier 2 – Dead Horse Creek

- Belus 1 field average root zone EC of 4.5 dS/m
- Surface EC = 1.3 dS/m, bottom of root zone EC = 7.8 dS/m; this represents a 6x increase
- A 6x increase in soil EC from top to bottom of root zone equates to a leaching fraction between .15 and .20 (Figure 2, Ayers and Westcot)
- A .15 to .20 leaching fraction equates to a 1.5 concentration factor (Table 3, Ayers and Westcot)
- Avg. root zone EC of 4.5 divided by 1.5 equals 3.0 dS/m EC permit limit (if this were the only field)

Soil chemical analysis results for the Beaver Creek site. 1,2

Site	Depth	рН	Electrical Conductivity at 25° C (EC)	Average EC to a Depth of 48 inches	Ca	Mg	Na	Sodium Adsorption Ratio (SAR)	Cation Exch. Capacity (CEC)		Exch. Sodium Percent (ESP)	Average ESP to a Depth of 48 inches	Lime as CaCO ₃
		s.u.	dS/m			meq/L			meq/100g		%		
	0-6	7.2	3.69		20.2	6.86	14.4	3.9	30	1.4	4.5		2.9
	6-12	7.7	5.62		19.7	9.84	40.9	11	25	2.6	10		3.7
Little	12-24		12.1	9.4	18.8	29.8	109	22	23	6.9	29	18.8	3.4
Buffalo	24-36	8	12.5	3.4	20.7	36.5	96.4	18	21	4.6	22	10.0	3.1
	36-48	7.9	8.41		19.6	31.6	66.1	13	20	3.4	17		3.6
	48-72	7.8	7.69		22.0	24.2	58.9	12	19	2.4	13		3.6
	0-6	7.3	4.78		21.7	10.2	26.3	6.6	26	1.4	5.4		3.3
	6-12	7.9	9.16		21.1	18.0	72.6	16	22	3.2	15	16.0	3.4
Flying T	12-24	8.2	13.2	10.8	19.9	33.7	126	24	22	4.3	19		4.2
Figilig i	24-36	8.2	12.3	10.8	24.1	32.6	123	23	22	3.7	17		4.7
	36-48	8	10.9		22.9	31.6	91.9	18	20	3.6	18		4.6
	48-72	7.9	10.9		23.5	31.2	92.5	18	19	3.1	16	i de la companya de	4.0
	0-6	7.4	2.01		14.9	4.87	4.35	1.4	32	8.0	2.7		4.9
	6-12	7.7	4.61		21.1	9.76	27.8	7.1	27	2.0	7.4		4.0
lharlin	12-24	7.9	7.35	7.2	21.0	18.1	77.2	17	27	4.6	17	46.0	4.7
Iberlin	24-36	8	10.1	1.2	19.3	21.7	95.6	21	23	5.6	24	16.0	4.6
	36-48 7.9 7.	7.93		19.4	17.3	67.5	16	22	3.9	18		4.3	
	48-72	7.9	7.07		18.2	16.2	54.0	13	21	3.2	15		4.0
			Average EC:	9.1						Ave	erage ESP:	17.0	

Notes:

Samples were collected on April 18, 2007 at the Iberlin site and on May 17, 2007 at the Flying T and Little Buffalo sites by KC Harvey, Inc. using a Giddings Probe. Samples were analyzed by Energy Laboratories, Inc., Helena, Montana.

² pH, EC, calcium, magnesium, and sodium analysis were conducted using a saturated paste extract. Abbreviations used are as follows: s.u.= standard units; dS/m= deciSiemens per meter, meq/L= milliequivalents per liter, meq/100g= milliequivalents per 100 grams of soil, and %= percent

³ Average EC and ESP to a depth of 48 inches was calculated by averaging the 0 to 6 and 6 to 12 inch depths to derive a 0 to 12 inch value, then averaging together each 12 inch depth increment to a depth of 48 inches.

Site	Depth	Electrical Conductivity at 25° C (EC)	Average EC to a Depth of 48 inches
	0-6	3.69	
	6-12	5.62	
Little	12-24	12.1	9.4
Buffalo	24-36	12.5	3.4
	36-48	8.41	
	48-72	7.69	
	0-6	4.78	
	6-12	9.16	
Elving T	12-24	13.2	10.8
Flying T	24-36	12.3	10.0
	36-48	10.9	
	48-72	10.9	
Iberlin	0-6	2.01	
	6-12	4.61	
	12-24	7.35	7.2
	24-36	10.1	1.2
	36-48	7.93	
	48-72	7.07	
		Average EC:	9.1

Tier 2 – Another View

- Assume in this example that alfalfa growing in Iberlin field in Beaver Creek
- 100% yield thresholds for alfalfa is soil EC of 2.0 dS/m
- Average root zone EC of Iberlin field is 7.2 dS/m
- Avg. root zone EC must exceed 7.2 dS/m to cause a measurable decrease in baseline alfalfa production
- Assume CBNG discharge EC of 2.2 dS/m
- 2.2 dS/m x 1.5 concentration factor = 3.3 dS/m (will not change average root zone EC of 7.2 dS/m)

Tier 2 – SAR

- The chemistry of discharged CBNG water (including EC and SAR) changes as it moves down the channel
- Establish end of pipe EC limit based on Tier 2 analysis
- Monitor SAR above irrigated fields (IMP) by applying "no reduction in infiltration" equation to EC and SAR measured in stream samples
- DEQ has implemented this strategy for several permits in recent months
- In my opinion, this is the only way to apply Hanson (Ayers and Westcot)

Conclusions

- Tier 1 is very conservative
 - ✓ EC limits based on California data
 - √ Wyoming data demonstrate SAR 16 safe
 - ✓ Suarez Study not right for Wyoming
- Tier 2 preserves flexibility and ability to use water
 - ✓ Composite soil sampling is scientifically valid
 - √ 1.5 concentration factor is useable for Wyoming soils
 - ✓ Accurate salinity measure requires use of entire root zone
 - ✓ We can predict changes to soil EC from water EC
 - ✓ Best application of Hanson equation is for monitoring SAR at point of use, not the outfall

Closing Comments

- After 10 years experience in CBNG, not aware of any measureable decrease in crop or livestock production
- Proposed rule has protected the irrigation use while in effect as policy
- Continued flexibility necessary to develop the CBNG resource and protect agricultural uses of the water

