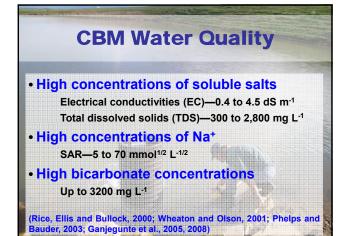
CBM WATERS: Characterization and Affects on Ecosystem Properties orge F. Vance **Department of Renewable Resources University of** Wyoming E MARS

Introduction

- pH, EC, SAR, Alkalinity, Trace Elements • pH determines acid-base nature of the solution • EC is a measure of salt content (1.0 dS/m = 0.87 ton of salt/acre foot of water (7758 barrels) • SAR is the ratio of Na to Ca + Mg SAR (mmol^{1/2} L^{-1/2}) = [Na⁺]/ [Ca²⁺ + Mg²⁺]^{1/2} Alkalinity is a measure of HCO₃⁻ and CO₃²⁻ • Trace Elements (Al, As, B, Cl, Se, etc.) Agricultural water use (Irrigation Standards) • EC < 0.75 dS/m • SAR < 10
 - Residual Sodium Carbonate (RSC) <1.25 RSC = [HCO3 and CO32] - [Ca2+ Mg2+]

Introduction

- **Texture and Structure**
- **Mineralogy and Organic Matter**
- Clay mineral type and OM properties
- EC vs ESP EC (dS/m) ESP
- Nonsaline/nonsodic <4
- Nonsaline/sodic
 Saline/nonsodic < 4
- >4 Saline/sodic >4
- > 15
- Impacts to soil physical and chemical properties Infiltration and Permeability
 - Function of soil texture and structure
 - Physical disruption aggregate slaking and clay particle dispersion


< 5 > 15

< 15

Crusting

Introduction

- Salinity (salts)
- Osmotic effects (water relations)
 Specific ion effects (nutrient balance)
- Sodicity (Na)
- Non-essentialNa toxicity
- Plant germination, emergence, root development, growth, yield
- Plant specific irrigation water use
 - Water logging vs water deficiencies
 - Infiltration •
 - Hydraulic conductivity Aeration
 - **Nutrient availability**

CBM Waters

Soil and Vegetation Considerations

Na⁺ and soluble salt accumulation in soils, particularly on fine textured soils.

- Negative impacts on infiltration rates and soil water flows
- Alteration in relative species composition and dominance of vegetation community
 - differential tolerances of individual species and life-forms to altered soil environmental conditions

Short-term CBM Water Irrigation Study

Soil pits - 9 total Soil series -Forkwood - silty clay loam -Uim - silty clay loam -Kishona - Ioam

Soil-Water Treatment Study

- Site Characteristics
- 15 ha irrigated field near UCross, WY

- Flood irrigated for the last 10 years
 <u>Used for grazing and hay grass</u>
- Planted in alfalfa/grass mix in 1995

Plots monitored for

- Effects of gypsum and S on pH, EC, SAR, and SO₄² concentrations
- Used a split plot experiment
- Baseline and post treatment soil samples collected to 60 cm

Irrigation water treatments and surface amendments

- Treatments/amendment added to CBM water/soil to reduce soil impacts
- Water treatments included:
 - 1. No treatment
 - 2. Solution grade gypsum
- 3. No. 2 plus S burner (SO₂ production)
- Soil amendments included:
 - 1. No treatment
 - 2. Gypsum (3.4 Mg ha⁻¹)
 - 3. Agricultural S (1.1 Mg ha⁻¹)
 - 4. Combination of No. 2 and 3

Irrigation water tre	atments and surface amendme	nts

Water Used	Surface Applied Soil Treatment	Water Treatment Before Irrigation	Abbreviations Used
Piney Creek (PC)	none	none	PC+NT
PC	gypsum	none	PC+G
PC	sulfur	none	PC+S
PC	Gypsum & sulfur	none	PC+GS
СВМ	none	none	CBM+NT
СВМ	gypsum	none	CBM+G
СВМ	sulfur	none	CBM+S
СВМ	Gypsum & sulfur	none	CBM+GS
СВМ	none	gypsum injector	CBM-G+NT
СВМ	gypsum	gypsum injector	CBM-G+G
СВМ	sulfur	gypsum injector	CBM-G+S
СВМ	Gypsum & sulfur	gypsum injector	CBM-G+GS
СВМ	none	gypsum inj. & sulfur burner	CBM-GSB+NT
СВМ	gypsum	gypsum inj. & sulfur burner	CBM-GSB+G
СВМ	sulfur	gypsum inj. & sulfur burner	CBM-GSB+S
СВМ	Gypsum & sulfur	gypsum inj. & sulfur burner	CBM-GSB+GS

Irrigation and CBM Water Chemistry

	рН	EC	TDS	ALK	Na⁺	Ca ²⁺	Mg ²⁺	SAR
Water Sample	s.u.	dS/m	mg/L	mg/L	mg/L	mg/L	mg/L r	nmol ^{1/2} L ^{-1/2}
Piney Creek	8.3	0.64	470	207	28.1	74.8	29.5	0.69
СВМ	8.3	1.38	910	802	344	8.9	3.9	24.3
	K⁺	Fe	CI.	F'	HCO3	CO32	RSC	SO42-
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mmol _(c)	/L mg/L
Piney								
Creek	5.8	100	2.5	0.19	237	7.5	<1	137
СВМ	3.1	560	12.8	0.94	853	61.5	15.3	<1.0

Satur	ated I	Paste E	xtrac	t EC	(dS/	m)
		Pre Irrigation	Po	st Irrigat	ion (200	4)
Water	Soil			Soil Trea	tment	
Treatment	Horizon		NT	G	S	GS
PC	А	0.84 - 0.89	0.94	1.5	1.5	2.1
	Bt ₁	0.61 - 0.62	0.81	1.4	1.0	1.6
	Bt,	0.55 - 0.58	0.76	2.1	3.0	2.1
	-					
CBM	А	0.83 - 1.2	1.5	2.1	2.4	2.8
	Bt₁	0.54 - 0.76	0.80	1.9	1.2	1.9
	Bt,	0.51 - 0.59	0.73	2.0	1.1	2.0
	-					
CBM-G	А	0.73 - 0.87	1.8	2.5	2.4	2.5
	Bt₁	0.53 - 0.63	1.3	1.8	1.6	1.9
	Bt ₂	0.50 - 0.55	1.0	2.2	1.7	2.2
	-					
CBM-GSB	Α	0.86 - 1.0	2.0	3.9	3.1	3.7
	Bt,	0.43 - 0.60	1.8	3.3	2.1	2.6
	Bt ₂	0.47 - 0.53	1.7	2.6	2.1	2.5
	-					

Saturated Paste Extract SAR (mmol^{1/2} L^{-1/2})

		Pre Irrigation	Post Irrigation (2004)			
Water	Soll	Soll Treatment				
Treatment	Horizon		NT	G	S	GS
PC	А	0.30 - 0.37	0.77	0.54	0.56	0.47
	Bt ₁	0.51 - 0.65	0.73	0.52	0.63	0.60
	Bt ₂	0.43 - 0.62	0.85	0.62	0.67	0.56
СВМ	А	0.25 - 0.45	7.7	5.6	6.1	4.5
	Bt ₁	0.48 - 0.63	2.3	2.0	2.7	2.4
	Bt ₂	0.58 - 0.64	1.3	0.94	1.1	0.92
CBM-G	А	0.28 - 0.38	7.5	5.6	5.7	5.0
obiir o	Bt ₁	0.49 - 0.60	2.9	3.2	2.7	2.8
	Bt ₂	0.63 - 0.66	1.0	1.0	0.86	1.0
CBM-GSB	А	0.32 - 0.39	5.5	3.7	4.4	3.9
	Bt ₁	0.42 - 0.58	2.7	2.7	3.7	3.4
	Bt ₂	0.55 - 0.75	1.1	1.1	1.2	1.2

2006 Post Irrigation Infiltration Rate (IR) (mm/hr)

Water	Soil Amendment					
Treatment	NT G S GS					
PC	25.3ª	27.1ª	25.0	24.6 ^{ab}		
СВМ	12.2 ^b	13.5 ^b	17.7	17.7 ^b		
CBM-G	13.2 ^{ab}	22.1 ^{ab}	21.5	23.8 ^{ab}		
CBM-GSB	18.2 ^{Bab}	25.8 ^{ABab}	27.0 ^{AB}	33.5 ^{Aa}		
Capital letters indicate a significant difference between means of amendments (P40.05). Lower case letters indicate a significant difference between means of water treatments (P50.05).						

RESULTS Soil-Water CBM Study

EC and SAR increased with all treatments in the top two soil depths

Water treatments resulted in:

- CBM water increasing EC and SAR in surface soil
- CBM-G water had no effect on SAR in the A horizon compared to CBM water
- CBM-GSB water was the most effective treatment for SAR
- + Higher soluble Ca^{2*} when HCO_3^{\cdot} was removed with SB
- CBM water IR lower than PC control

RESULTS Soil-Water CBM Study

Surface amendments resulted in:

- GS lowering A horizon SAR compared to G or S amendments
- SAR of all soil amendments lower than CBM and CBM-G water treatments
- No differences in Bt1 and Bt2 SAR with surface • amendments
- GS amendments + GSB water treatment • effective in maintaining low surface SAR
- **CBM-GSB** water treatment with GS soil amendment highest IR

Multiple Site CBM Study

Soil Studies

6 sites - sampled 2003 & 2004

- 6 depth intervals (0 120 cm)
 - pH EC SAR ESP

 - texture
 - bulk density
 infiltration rates

- infiltration rates
 Darcy flux
 Vegetation Studies
 5 sites with native plant communities (3 original and 2
 new sites) sampled 2004 and 2005
 production, cover, frequency, species richness, evenness,
 AM fungi infectivity on dominant grass species

al gas wat 008. J Env e. Ki ig, and Va atura :e. 20 tal Qua ity 37:S1

Study Site Characteristics

Site (CBM irrigated)	Application & Treatment Methods	Soil Amendments	Vegetation Type/ dominant species
1 (3yr)	Center Pivot water not treated	Surface application Gypsum/Sulfur	Seeded perennial grasses/western wheatgrass
2 (1 yr)	Center Pivot Zeolite	None	Seeded 2003/ germinating oats
3 (3 yr)	Side Roll Sulfur Burner	Surface application Gypsum/Sulfur	Native grassland /needle and thread grass
4 (2 yr)	Center Pivot Sulfur Burner	Surface application Gypsum/Sulfur	Hayfield/Alfalfa & intermediate wheatgrass
5 (2 yr)	Side Roll Sulfur Burner	Surface application Gypsum/Sulfur	Hayfield/Smooth Brome & alfalfa
6 (3 yr)	Side Roll Sulfur Burner	Surface application Gypsum/Sulfur	Native grassland/ western wheatgrass

Study Site Characteristics

Water Quality

2003	рН	7.8 - 8.9
		1.4 - 4.0 dS/m
	SAR	15 - 38 mmol ^{1/2} L ^{-1/2}

pH 6.9 - 9.1 EC 1.6 - 4.9 dS/m SAR 18 - 57 mmol^{1/2} L^{-1/2} 2004

Recommended for irrigation use EC 0.75 dS/m SAR <10 mmol^{1/2} L^{-1/2}

Results - CBM Irrigation

SOIL EC

- 14 of 36 irrigated sample depths were saline (>4 dS m⁻¹) vs 3 of 36 control site depths
- EC greater (p=0.05) on irrigated vs control sites:
 - 0-120 cm on clay soil irrigated sites
 - 0-60 cm on course soil irrigated sites
 - 0-30 cm on site with 1+ seasons of **CBM** water application

Results – CBM Irrigation

SOIL SAR

- •7 of 36 irrigated sample depths were sodic (>13 mmol^{1/2} L^{-1/2}) vs 0 of 36 control site depths
- SAR greater (p=0.05) on irrigated vs control sites:
 - 0-120 cm on SB treated, clay dominated irrigated sites
 - 0-60 cm on non-SB treated clay dominated irrigated sites

Results - CBM Irrigation

SOIL ESP

- 23 of 36 irrigated sample depths were sodic (>15%) vs 1 of 36 control site depths
- ESP greater (p=0.05) on irrigated vs control sites:

- 32 of 36 irrigated sample depths
- all treated areas to 30 cm

Results - CBM Irrigation

	Infiltration Rate (cm/hr)								
Site	May Irrigated	May Control	p value	October Irrigated*	October Control	p value			
1	0.0	9.2	<0.01	0.0	10.7	<0.01			
2	0.3	4.6	<0.01	0.2	5.3	<0.01			
3	6.5	8.1	0.11	7.1	9.4	0.07			
4	2.2	7.2	0.12	3.1	11.9	0.02			
5	13.8	21.5	0.06	9.0	14.4	0.07			
6	6.5	7.2	0.43	0.4	11.9	<0.01			

* All late season irrigated sites had infiltration rates slower than control sites.

Results - CBM Irrigation

Flux Rates

- Site 1 (0-120 cm) & site 4 (0-60 cm) had significantly slower flux rates
- Other irrigated sites had slower rates at most depths – no significant trends
- 2003 vs 2004 Flux rates were significantly slower at most irrigated sites & depths

Soil Impacts from CBM Water

Irrigation with CBM waters resulted in:

- Salinity/sodicity exceeded irrigation H₂O limit
 Increasing soil (SPE)
- EC to 120 cm on house
 - EC to 120 cm on heavy clay soils (>2+ yrs)
 EC to 60 cm on sandy clay loam texture
 - EC to 60 cm on sandy clay loam texture
 - EC & SAR to 30 cm on site irrigated 1.5 yrs
 SAR to at least 60 cm (up to 120 cm) on
- heavy clay soilsVariable SAR (0-120) on sandy clay loam
- soil textures. • Decreasing soil
- surface water infiltration rates
- Darcy flux rates to depths of 120 cm

Vegetation Impacts from CBM Water

Irrigation with CBM waters resulted in:

- Reduced community diversity & evenness
- Increased perennial grass production, total vegetation biomass & aerial cover of salt/Na tolerant plants
- Other species had decreased biomass production and aerial cover
- Had no affect on plant species richness
- · Variable impacts to native plant species

Irrigation Water

- Acceptable levels of salinity and sodicity of irrigation water influenced by:
 - climate (particularly rainfall)
 - soil type
 - crop and plant species
- management practices
- Rainfall can increase
 Na hazard
 - flushes salts elevating bound soil Na
 - increase the likelihood that sodium-induced dispersion

CBM Water Management Strategies/Goals

 Maintain soil moisture at or near field capacity to maximize unsaturated (vs. saturated) flow

- Leach soluble salts and Na⁺ through soil profile and out of plant rooting zone
- Add soil amendments to supply Ca²⁺ and Mg²⁺ ions to replace Na⁺ on soil exchange sites

Tier 2 Risks

- Unmanaged versus managed irrigation
- Does not protect agronomic plants
 - ✓ Water quality versus quantity
 - ✓ Plant growth requirements
- Does not consider importance of soil
 properties
 - ✓ Clays (shrink-swell smectites)
 - ✓ Organic matter
- Sampling protocol

Tier 2 Risks

- Concerns raised by experts in Soil Science and Irrigation Technologies
 - ✓ Dr. D.L. Suarez *Director*, USDA-ARS Soil Salinity Laboratory
 - ✓ Dr. S.R. Grattan Plant-Water Relations Specialist (co-author of Hanson et al. 1999)
 - ✓ Dr. J.D. Oster *Emeritus Specialist*, Department of Environmental Sciences, University of California and *Co-Editor in Chief* of Agricultural Water Management