Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7

Section 2.7.3.45 Wyoming State Lease 42804 (WSL04) Amendment Soils Report

This section and associated Soils Map and Data Table comprise the soils baseline data for the WY State Lease 42804 Amendment. The methodology and data presented conform to those specified in Section 2.7.2.

This State Lease includes lands as follows (also refer to the Amendment Boundary Map 1.7-1)

Amendment Areas	Legal	Total Acres
	SE4SW4, SW4SE4 Section 30 T57N R62W	80
Wyoming State Lease 42804	NE4, E2NW4, SW4, NW4SE4 Section 31T57N R62W	440
	W2NW4 Section 32 T57N R62W	80
		600

The soils information for this Amendment was prepared by Lyle King, PhD Soil Scientist (University of Wyoming, 2005), during late summer and fall of 2014 (fieldwork and write-up).
Section 2.7.3.45 Wyoming State Lease 42804 (WSL04) Amendment Area Soil Report
This section and associated Soils Map and Addenda comprise the soils baseline study forthe Wyoming State Lease 42804 Amendment Area, Permit 267C.
TABLE OF CONTENTS
1.0 INTRODUCTION 3
1.1 Obiectives 3
1.2 Project Area 3
2.0 METHODS 3
2.1 Compilation of Available Information 3
2.2 Field Methods 4
3.0 SOIL CLASSIFICATION AND DESCRIPTION 4
3.1 Soil Classification 4
4.0 REFERENCES 12

ADDENDA

Addendum 2.7.3.45.A Laboratory Results 13
Table 2.7.45.A1. Topsoil Laboratory Analyses 14
Addendum 2.7.3.45.B Profile Descriptions 16
Addendum 2.7.3.45.C Representative Profile \& Map Unit Photographs 22
Addendum 2.7.3.45.D NRCS Soil Series Descriptions 36
Addendum 2.7.3.45.E Field Profile Description Forms 49
Addendum 2.7.3.45.F Soil Map 2.7.3.1 88

1.0 INTRODUCTION

1.1 Objectives

The objective of this soil inventory is to provide essential soil data for mine and reclamation planning. Specific tasks for the soil resource inventory are to:

1. Develop soil map units and delineate boundaries on appropriate aerial images.
2. Define soil physical and chemical characteristics.
3. Determine suitability and recommend soil salvage depths for each affected soil map unit.

1.2 Project Area

Bentonite Performance Mineral's Wyoming State Lease 42804 Amendment to Permit 267 (Project area) consists of approximately 600 acres located ten miles west of Colony in Crook County, Wyoming. It includes portions of sections 30, 31 and 32; T57N R62W (Soil Map 2.7.3.45-1).
The Project area is positioned on upland topography associated with the intersection of Black Hills uplift and rolling plains of southeastern Montana. It is characterized by rolling uplands and hills with areas of rough, eroded and broken terrain. Drainage is generally southwesterly to the Belle Fourche River. Geomorphology and soil development within the Project area has been influenced by tertiary deposits of interbedded, shale, sandstone and bentonite clay beds. Underlying formations are Lower Cretaceous shales and sandstones. Soils are influenced by dominant local geologic conditions, varying in chemical and physical properties accordingly.
Western Regional Climate Center summaries (1915 to 2005) from the Colony, WY (481905) reporting station (WRCC; http://www.wrcc.dri.edu/summary/climsmwy.html: accessed November 10,2014) indicate an annual average of 15.07 inches precipitation with average total snowfall of 41.1 inches. Maximum temperatures average $75^{\circ} \mathrm{F}$ for the growing season months of April-September. The soil moisture regime is Ustic. The soil temperature regime is mesic.
Vegetation communities in the Project area are dominated by P\ponderosa pine (Pinus ponderosa) and several native perennial grass species. Elevations within the study area range from approximately 3,600 to 3,800 feet above sea level.

2.0 METHODS

2.1 Compilation of Available Information

Series descriptions and interpretive records for soils potentially occurring within the Project area were obtained from the Natural Resource Conservation Service (NRCS) Web Soil Survey for Crook County, Wyoming (http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm). This information was also utilized to assist with soil identification, mapping, and interpretations in the field. Soils were identified based on field observations and laboratory results and, where possible, classified to soil series using NRCS web descriptions (Table 2.7.3.45.1).

2.2 Field Methods

Fieldwork was conducted by Lyle King in August, 2014. This survey approximates an order 2 level survey as defined in WY-LQD Guideline 1A, Page A-1. Soil map units were delineated on satellite imagery scaled at 1 inch to 400 feet. Typical profiles were described and sampled by soil horizon using hand-dug and hand-augered exposures. A total of 37 soil samples from 11 soil profiles were analyzed for topsoil suitability parameters by Inter-Mountain Laboratories, Inc. in Sheridan, Wyoming (Addendum 2.7.3.45.A, Table 2.7.3.45.A.1). Nine additional soil profiles were described but not sampled because they duplicated soil types sampled in the previous 11 profiles. Laboratory analytical parameters and methods follow those recommended by WYDEQ/LQD Guideline 1. Profile description summary tables are shown in Addendum 2.7.3.45.B. Representative photographs of affected soil map units are provided in Addendum 2.7.3.45.C. NRCS soil series descriptions are included in Addendum 2.7.3.45.D. Field profile description forms are included in Addendum 2.7.3.45.E. Sampled profile locations are illustrated on Soil Map 2.7.3.45-1 (Addendum 2.7.3.45.F).

Profiles were described on NRCS field pedon description forms (archived at the SVC Office in Shell, Wyoming) and are available upon request. Soil horizons were identified according to criteria in Keys to Soil Taxonomy, $12^{\text {th }}$ Edition (Soil Survey Staff, 2014) and described according to Field Book for Describing and Sampling Soils (Schoeneberger et al, 2012). Generally, features documented for each horizon include depth, color, texture, structure, estimated clay content, boundary type, and response to 1 Normal hydrochloric acid (HCL) solution. Descriptions of clay films, coarse fragment content, carbonate and gypsum accumulations, and root quantity were provided when appropriate. Site features documented include Universal Transverse Mercator (UTM) coordinate location using North American Datum (NAD) 83, elevation, landscape/landform description, hillslope profile position, aspect, slope percent, slope complexity, slope shape, parent material, bedrock type, surface coarse fragments and dominant vegetation.

Data from previous soil surveys associated with the adjacent Jolley Edsall Update area were also reviewed to supplement new information from this survey. Several soil series are common to both areas.

3.0 SOIL CLASSIFICATION AND DESCRIPTION

3.1 Soil Classification

Soils were classified to the series level based on profile descriptions, field observations and laboratory results. Series names were assigned by best match to soils mapped in the vicinity by the NRCS or other established series. Soil classifications (Table 2.7.3.45.1) were taken from NRCS soil series descriptions at:
http://www.nres.usda.gov/wps/portal/nrcs/detail/soils/survey/class/?cid=nrcs142p2 053587, and when necessary, supplemented with information from Keys to Soil Taxonomy (USDA, 2014).

3.2 Soil Map Unit and Soil Series Descriptions; Recommended Soil Salvage Depths and Profile Descriptions

Soil map unit designations are illustrated on Soil Map 2.7.3.45-1. Map unit designations are supplemented with numbers representing recommended salvage depths (topsoil/subsoil) in inches. Depths of suitable soil within the Project area are influenced by variable in-situ

Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7
chemical natures of parent material and variable depths to parent material. Recommended topsoil/subsoil salvage depths range from zero to 60 inches based on WYDEQ/LQD Guideline \#1 suitability ratings (Addendum 2.7.3.45.A, Table 2.7.3.45.A1). If soils are currently supporting native vegetation, but sufficient suitable material is not available for salvage, exceptions may be noted.
Profile descriptions for the Project area are provided in Addendum 2.7.3.45.B. Acreage for each soil map unit within the Amendment boundary and estimated topsoil/subsoil salvage volumes are presented in Table 2.7.3.45.3. Descriptions and characteristics of named soil series included with Addendum 2.7.3.45.D are taken from the NRCS soils web site at http://soils.usda.gov/technical/classification/osd/index.html.

Map Unit 1; Butche; $6 \% / 6 \%$ or lithic contact; 14.2 sampled acres/0 affected acre. Sampled Butche profile: SL-11
Butche soils have been previously described within BPM's Permit 267C with the Jolley Edsall Update/IBR (previous sample ID \#9, pages 2.7.3.45.22-7 to 9 and 27, 28; LQD approved 2011). Butche soils dominate the small upland grassland (14.2 acres) in the westcentral Project area. They are also a primary component in the Butche/Spangler Complex described below. Slopes are less than ten percent and aspects are southerly. Butche soils are very shallow and well drained. They weathered from non-calcareous sandstone and have lithic contact at 12 inches or less. Recommended salvage depths for this map unit are six inches and six inches (or lithic contact), respectively for topsoil and subsoil. Other than shallow lithic contact, no chemical or physical restrictions are noted.

Map Unit 1a; Butche/Spangler Complex; <30 slopes; 6"/6" or lithic contact; 39.7 sampled acres 19 affected acres.

This mapping complex occurs in two distinct units within the southern third of the Project area. It is comprised of Butche (50 percent), Spangler and Spangler taxadjunct (40 percent) and Louviers inclusions (ten percent). Very small inclusions of wetland soils (<one percent) also occur along downstream channels receiving flows and seepage from existing stock reservoirs.
Spangler soils form in upland residuum weathered from argillaceous, non-calcareous sandstone. They are moderately deep and well drained. Spangler taxadjunct soils within this unit are shallow but still have an argillic horizon at 3-11 inches. These soils are used for rangeland and wildlife habitat. Native vegetation is ponderosa pine forest and native grasslands.

Butche soils are previously described. Within this complex, Butche soils occupy steeper, broken topographies with gradients ranging up to 30 percent. They also support ponderosa pine forest and native grasslands.

Average recommended salvage depths for this map unit are six inches and six inches (or lithic contact), respectively for topsoil and subsoil. Other than shallow lithic contact, no other chemical or physical restrictions are noted.

Map Unit 2; Grummit; 6 "/12" or acid shale contact if shallower; $\mathbf{1 1 0 . 8}$ sampled acres/40 affected acres. Sampled Grummit profile: SL-12; Non-sampled profiles: SL-4, SL-6
Grummit soils have been previously described within BPM's Permit 267C with the 2006 Update Areas Soils Report. Grummit soils are associated with upland benches and mixed toeslope colluvium/residuum across the Project area. They occupy 80 percent of this map unit with the remaining 20 percent being primarily Querc inclusions. Slopes range from zero to 20 percent with various topographic aspects. Grummit soils consist of very shallow, well drained soils formed in clayey residuum weathered from acid fissile shale parent material. Observed depths to paralithic contact ranged from 18 to 36 inches. Weathered fragments of shale make up over 50 percent of C horizon volume in some described profiles. Laboratory analysis indicated very strong acidity at depths greater than 18 inches. Silty clay textures make this soil material marginal for suitable salvage even at the surface. However, in areas where this soil currently supports native vegetation, it is recommended to salvage six inches of topsoil and 12 inches of subsoil material. If possible, these soils should be stockpiled separately from other salvaged topsoil to reduce contamination. Low pH and silty clay textures are factors limiting suitability of this material for reclamation salvage.

Map Unit 2a; Steep Grummit; 6"/0"or acid shale if shallower; 88.4 sampled acres/14 affected acres.
Grummit soils within this map unit are associated with steep hill-slope topographies with gradients greater than 20% limiting access for soil salvage. Recommended salvage depths only extend to six inches for suitable topsoil and no suitable material for subsoil salvage.

Map Unit 3; Louviers; 3-6"/6" or paralithic contact if shallower; 12.7 sampled acres/0 affected acre. Sampled Louviers profiles: SL-7. Non-sampled profiles: SL15, SL-19
Louviers soils have been previously described within BPM's Permit 267C with the Jolley Edsall Update/IBR (previous sample ID's 1, 2, 4, 6, \& 8, pages 2.7.3.45.22-13-16 \& 25-28; LQD approved 2011). Louviers soils are mapped within two distinct units in the northwest and southeast of the Project area. They also occur as transitional inclusions within map units 1a and OC, associated with adjacent bentonite and shale outcrops.

Louviers soils are shallow and well drained, forming in thin parent material weathered from non-calcareous shale. Slopes are less than ten percent. These soils are used principally as rangeland. Native vegetation is dominated by green needlegrass (Nassella viridula), prairie junegrass (Koeleria macrantha), western wheatgrass (Elymus smithii) and Wyoming big sagebrush (Artemisia tridentata).
Laboratory analyses indicate these soils are usable as plant growth medium to 12 inches, although high clay content (60%) makes them marginal for salvage. No other restrictions were noted. Therefore, recommended topsoil and subsoil salvage depths are six inches and six inches, respectively.

Permit 267C - WY State Lease 42804 Amendment
Supporting Information -2.7
Map Unit 5; Querc; $<15 \%$ slopes with $\mathbf{1 0 - 2 0 \%}$ Grummit inclusions; 168.0 sampled acres/67 affected acres. Salvage Depths, $6 " / 18 "$. Sampled Ouerc profiles: SL-3, SL10, SL-20. Non-sampled profiles: SL-5, SL-14, SL-16
Querc soils have been previously described within BPM's Permit 267C with the Jolley Edsall Update/IBR (previous sample ID \#5, pages 2.7.3.45.22-18-19 \& 25-26; LQD approved 2011). This map unit is extensive on low hills, ridge slopes and upland terraces in this Project area. Slopes are less than 15 percent. Grummit (15 percent) and Louviers/Outcrop (10 percent) inclusions also occur.
Querc soils form in residuum weathered from acid fissile shale. They are deep and well drained with depths to the base of the argillic horizon ranging from 10 to 22 inches and depths to bedded shale ranging from ten to 40 inches. They are used for rangeland and wildlife habitat. Dominate perennial grasses are green needlegrass, prairie junegrass, and Kentucky bluegrass (Poa pratensis). Scattered ponderosa pine and scrub oak also occur.

Laboratory analyses indicate these soils are suitable for salvage as plant growth medium to 24 inches, although high clay content can reduce suitability to a marginal status in some profiles. Acid conditions of the fissile shale parent material limit salvage below 24 inches. No other restrictions were noted. Recommended topsoil and subsoil salvage depths are 6 inches and 18 inches, respectively.

Map Unit 5a; Querc; >15\% slopes with 20-30\% Grummit inclusions; 52.6 sampled acres $/ 5$ affected acres. Salvage Depths, $6 " / 18 "$.
Querc soils within this map unit are associated with steep toe-slope topographies with gradients greater than 15 percent. Grummit inclusions range from 20-30 percent. Recommended salvage depths are the same as map unit 5.

Map Unit 6; Recluse; Salvage Depths, 6"/54"; 14 sampled acres/14 affected acres. Sampled Recluse profile: SL-13

This map unit occurs on upland benches in the central and southern portion of the Project area. Recluse soils are very deep, well trained and moderately permeable. Mollic epipedons are approximately six inches thick. Characteristically, it is 24 inches to continuous calcium carbonate accumulation and the base of the argillic horizon. Slopes are less than ten percent with variable aspects. Recluse soils are used for rangeland and wildlife habitat. Dominant perennial grasses are green needlegrass, prairie junegrass, and Kentucky bluegrass. Scattered individuals of ponderosa pine also occur. These soils have no physical or chemical restrictions in the upper 60 inches. Recommended topsoil and subsoil salvage depths are six and 54 inches, respectively.

Map Unit 7; Spangler taxadjunct; $6 \% / 6$ or lithic contact if deeper; 7.8 sampled acres/4 affected acres. Sampled Spangler taxadjunct profile: SL-9
This is a small, distinct map unit dominating an upland bench and small meadow in the southwest of the Project area. However Spangler taxadjunct soils are also co-dominant in the larger Butche/Spangler Complex (Map unit 1a) and in both Ravine Complexes (RC1 and RC2), all of which are also located in the southwest Project area. These soils are considered taxadjunct because of their shallow depth (approximately one foot) to sandstone bedrock.

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7
Spangler soils are moderately deep and well drained. They formed in upland residuum weathered from fine grained, non-calcareous sandstone. Slopes are various, up to 20 percent. Aspects are also various. These lands are dominated by native perennial grasses with occasional ponderosa pine. They are primarily used for domestic livestock grazing and wildlife habitat. These soils have no physical or chemical restrictions above paralithic or lithic contact with sandstone. Recommended topsoil and subsoil salvage depths are six inches and six inches (or lithic/paralithic contact), respectively

Map Unit 8; Broadhurst taxadjunct; $\mathbf{6 " / 1 8 "}$ or paralithic contact if shallower;

 8.7 sampled acres/0 affected acre. Sampled Broadhurst profile: SL-1This map unit delineates a small colluvial fan and terrace deposition area along the eastcentral Project area. Broadhurst soils are very deep, well drained soils formed in clayey material derived from acid shales. They are considered taxadjunct in the Project area because they have less than 60 percent clay in the control section. These soils have very slow permeability. Slopes are less than 3 percent. The C horizon has common nests of gypsum and other salts. These soils are used primarily for rangeland and wildlife habitat. Native vegetation is prairie junegrass, green needlegrass, Kentucky bluegrass, scattered ponderosa pine and Wyoming big sagebrush. These soils are strongly acid below 24 inches. Recommended topsoil and subsoil salvage depths are six inches and 18 inches, respectively.

Map Unit 8a; Wetland Soils; $0 " / 0 " ; 4.1$ sampled acres/1 affected acre. Sampled profile: SL-2

This map unit delineates inundated areas of unclassified soils associated with the drainages and impoundment area near the center of the Project area. These are wetland soils with mottling and orange staining common at two inch depth and gleying occurring at eight inches. Slopes are less than two percent. This profile has a two inch organic layer on the surface. Strong acid conditions extend to the surface and there is no suitable soil available for salvage.

Map Unit 9; Unnamed Argiustol; $\mathbf{6 " / 3 0 " ;} \mathbf{1 0 . 1}$ sampled acres/0 affected acre. Sampled Argiustol profile: SL-18

This map unit occurs within the upland meadow occupying the southwest border of the Project area. Slopes are gentle (less than three percent) and aspects are southerly. These soils have a high clay content with a calcic layer at 12-22 inches. They formed in upland residuum from argillaceous shale parent material and are dominated by native perennial grasses and intermittent Wyoming big sagebrush. They are primarily used for domestic livestock grazing and wildlife habitat. These soils have no physical or chemical restrictions above paralithic contact with clay/shale parent material at 36 inches, although suitability becomes marginal at 12 inches due to high saturation percentages and high clay content. Recommended topsoil and subsoil salvage depths are six inches and 30 inches, respectively.

> Map Unit RL; Previously Reclaimed AML Lands; Salvage Depths; 0"/0"; 6.6 sampled acres $/ \mathbf{1}$ affected acre.
> This map unit delineates bentonite mine lands previously reclaimed by Wyoming's Abandoned Mine Land (AML) program. This area consists of recontoured and seeded
bentonite spoil but does not appear to have reapplied topsoil. It has no material suitable for soil salvage.

Map Unit RC1; Steep Ravine Complex; 40-50\% slopes; Salvage Depths Variable; 37.6 sampled acres/6 affected acres.

This map unit delineates a distinct ravine area cross-cutting near the center of the Project area. It is characterized by deep, steep-sided ravines dominated by a complex of Butche (60 percent); sandstone rock outcrops (15 percent), Spangler taxadjunct (15 percent), Louviers/Outcrop (10 percent). Very small inclusions of wetland soils (less than one percent) also occur along downstream channels receiving flows and seepage from existing stock reservoirs. Salvage depths will follow those of the component soil types if affected.

Map Unit RC2; Steep Ravine Complex; 40-50\% slopes; Salvage Depths Variable; 11.6 sampled acres/0 affected acre.

This map unit delineates a distinct ravine area in the southwest of the Project area. It is characterized by deep, steep-sided ravines dominated by a complex of Grummit (70 percent); Querc (20 percent); Butche, Spangler taxadjunct and sandstone rock outcrops (ten percent). Salvage depths will follow those of the component soil types if affected.

Map Unit OC; Barren Clay and Bentonite Outcrops; < 5% slopes; Salvage Depths 0"/0"; 0.8 sampled acres/0.7 affected acre.

This map unit was delineated in two small areas with shale and clay surface outcrops near the west-center of the Project area. It has no salvageable soil materials. This map unit also occurs in the mapping complex noted below.

Map Unit 3/OC; Louviers/Barren Clay Outcrop Complex; <10\% slopes; Salvage Depths Variable (according to composition); $\mathbf{1 1 . 3}$ sampled acres/5 affected acres.
This map unit is comprised of surface outcrops of barren shale and clay with adjacent Louviers transitional areas. Aspects and slopes are variable. Soil salvage will follow those previously recommended for each component soil type.

Map Unit W; Open Water; Salvage Depths 0"/0"; 3.6 sampled acres (4 separate pond areas)/0.3 affected acre.
This map unit designates areas of open water associated with four small stock-watering reservoirs. Soil salvage would require prior draining of these reservoirs and was not assessed.

Supporting Information - 2.7

Table 2.7.3.45.1. Soil Series; Profiles Described and Sampled*; Taxonomic Classifications. *Indicates profile was sampled for laboratory analyses. ${ }^{\text {T}}$ Indicates profile is within proposed affected area. ${ }^{55}$ Indicates profile is within 800 feet of proposed affected area.

Soil Series	Described/Sampled Representative Profiles	Family Classification
Butche	SL-11*S	Loamy, mixed, superactive, nonacid, mesic Aridic Lithic Ustorthents
Grummit	SL-4 ${ }^{\text {S }}$, SL-6, SL-12* ${ }^{\text {s }}$	Clayey, smectitic, acid, mesic, shallow Aridic Ustorthents
Louviers	SL-7 ${ }^{\text {E5 }}$; SL-15 ${ }^{55}$, SL-19 ${ }^{\text {S }}$	Clayey, mixed, superactive, nonacid, mesic, shallow Ustic Torriorthents
Querc		Fine, smectitic, mesic Aridic Argiustolls
Reclaimed Land	SL-17 ${ }^{\text {SS }}$	Not assessed
Recluse	SL-13*5	Fine-loamy, mixed, superactive, mesic Aridic Argiustolls
Spangler taxadjunct	SL-9* ${ }^{\text {S }}$	Fine-loamy, mixed, superactive, mesic Ustic Haplargids
Broadhurst taxadjunct	SL-1*5S	Very-fine, smectitic, acid, mesic Torrertic Ustorthents
wetland soils	SL-2**S	not assessed, O horizon 0-2" depth
Unnamed Argiustol	SL-18**S	mesic Ustic Torriorthents

Table 2.7.3.45.2. Soil Map Unit Descriptions; Recommended Salvage Depths

Map Unit	Description	Topsoil Salvage (inches)	Subsoil Salvage (inches)
1	Butche	6	6
1a	Butche/Spangler Complex; <30\% slopes; 10\% Louviers	6	6 or lithic contact
2	Grummit; <20\% slopes; 20\% Querc inclusions	6	12 or acid shale contact
2a	Steep Grummit; $\mathbf{> 2 0 \%}$ slopes; 10% RO inclusions	6	0
3	Louviers; <10\% slopes; 10\% OC inclusions	3-6	6 or paralithic contact
5	Querc; <15\% slopes; 1020\% Grummit inclusions	6	18
5a	Querc; >15\% slopes; 2030\% Grummit inclusions	6	18
6	Recluse	6	54
7	Spangler taxadjunct	6	6 or lithic contact
8	Broadhurst taxadjunct	6	18 or paralithic contact
8 a	wetland Soils	0	0
9	Unnamed Argiustol	6	30
RL	Reclaimed Land	0	0
RCl	Ravine Complex 1	variable	variable
RC2	Ravine Complex 2	variable	variable
OC	Barren clay/shale Outcrops	0	0
3/OC	Louviers/Barren Outcrops	variable	variable
W	Open water	0	0

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7
Table 2.7.3.45.3. Soil Map Units Sampled Acreage, Projected Affected Acreage, and Proposed Salvage Volumes Within the State Lease \#4 Amendment Area.

Soil Map Unit	Acres Sampled	Proposed Affected Acres	Topsoil Salvage Volume (yd	
1, Butche	14.2	0	0	Subsoil Salvage Volume (.3d
1a, Butche/Spangler Complex	39.7	19	15,327	15,327
2, Grummit	110.8	40	32,267	64,533
2a, Steep Grummit	88.4	14	11,293	0
3, Louviers	12.7	0	0	0
5, Querc <15\% slopes	168.0	67	54,047	162,140
5a, Querc >15\% slopes	52.6	5	4,033	12,100
6, Recluse	14.4	14	11,293	101,640
,, Spangler taxadjunct	4.8	4	3,227	3,227
8, Broadhurst taxadjunct	8.7	0	0	0
8a, wetland soils	4.1	1	0	0
9, Unnamed Argiustol	10.1	0	0	0
RL, Reclaimed Land	6.6	1	0	0
RC1, Ravine Complex 1	37.6	6	4,840	4,840
RC2, Ravine Complex 2	11.6	0	0	0
OC, Barren clay/shale Outcrops	0.8	0.7	0	0
3/OC, Louviers/Barren Outcrops	11.3	5	0	0
Open water	3.6	0.3	0	0
GRAND TOTALS	$\mathbf{6 0 0 . 0}$	177	136,327	363,807

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7

4.0 REFERENCES

Schoeneberger, P.J., D.A. Wysocki, E.C. Benham, and Soil Survey Staff. 2012. Field book for describing and sampling soils, Version 3.0. Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE.

Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online at http://websoilsurvey.nrcs.usda.gov/. Accessed April-October, 2014.

United States Department of Agriculture (USDA), Soil Survey Staff. 2014. Keys to Soil Taxonomy. Twelfth Edition. U.S. Government Printing office. Washington D.C

United States Department of Agriculture (USDA). 1993. Soil Survey Manual, Handbook No. 18. U.S. Government Printing office. Washington D.C.

Wyoming Department of Environmental Quality, Land Quality Division November 1994. Guideline No. 1, Topsoil and Overburden

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information -2.7

Addendum 2.7.3.45.A

Laboratory Results

$カ I-S_{r} c L^{\prime}$ Z

20＊0＞	8t＊0	D！ 5	\＆＊9S	8.82	0．${ }^{\text {S }}$	E8＊0	$95^{\circ} 0$	Es＇0	9¢0	80	9 I	$61^{\circ} 0$	9：8L		98－8I	
$20.0>$	てع＇0	DIS	s＇zs	$00 t$	$5 \cdot$	IE：0	$61^{\circ} 0$	\downarrow を＊	でく	L＇I	$0 \cdot \varepsilon$	カ1゙0	が99	L＇S	8I－0I	
20．0＞	ゅを゙0	D！${ }^{\text {S }}$	¢＇ZS	00t	$5 \cdot L$	II＇0	$80^{\circ} 0$	です	L9＊0	L＇I	¢＇も	$9{ }^{\circ} 0$	9．SL	6.5	0I－\downarrow	
$20 \cdot 0>$	$9 \varepsilon^{0} 0$	DIS	8．\downarrow	8＇\downarrow ¢	S＇ZI	t［＇0	E1\％0	$85^{\circ} 0$	01＊I	$8 \cdot 1$	で8	0で0	† ¢ ${ }^{\text {¢ }}$	6.5	t－0	RZOW／7turumup／ZITS
20＇0＞	LE＊0	InS	¢＇zE	$0 \cdot 07$	S゙Lt	Iで0	$61^{\circ} 0$	OS＇0	$\underline{I} \cdot 1$	$0{ }^{\circ} \mathrm{I}$	\checkmark ¢	$9{ }^{\circ} 0$	I＇¢9	$8{ }^{\circ} \mathrm{S}$	In－t	
200＞	$8 \varepsilon^{\circ} 0$	T	0＇sZ	00ε	0．St	SE＊0	IE．0	$85^{\circ} 0$	10.1	$8 \cdot 0$	$8{ }^{\circ} \mathrm{t}$	¢で0	で9S	$0 \cdot 9$	$t-0$	Inw／ə
$20^{\circ} 0>$	$85^{\circ} 0$	0	S＇Lt	¢＇LZ	$0 \cdot \mathrm{SZ}$	ZL＊0	じ゚	ャで0	19.0	$9^{\circ} \mathrm{Z}$	$L^{\prime} \mathrm{E}$	Lİ0	8＊L6	［＇9	てI－+	
2000	$\varepsilon \square^{\circ} 0$	0	$8 . \varepsilon \square$	\＆＇İ	0 O．${ }^{\text {c }}$	ZS＊0	$6 \varepsilon^{\circ} 0$	$\varepsilon \varepsilon^{\circ} 0$	$9 L^{\circ} 0$	でZ	でし	Sで0	90．SL	［＇9	t－0	¢กW／－rənర／01TS
20．0＞	Z6\％	\bigcirc	0＇st	¢てを	S＇ZZ	カガて	LE＇Z	t0 ${ }^{\circ}$	S8．0	9.1	「•	LE＊	§＂9L	$9 \times$	【－${ }^{\text {¢ }}$	uoishiput
20＊0＞	$L \varepsilon^{\circ} 0$	TS	$0 \cdot \mathrm{SI}$		$0 \cdot 09$	$\varepsilon \varsigma^{\prime} Z$	L9 ${ }^{\text { }}$ I	$8 \varepsilon^{\circ} 0$	$6{ }^{\circ} 0$	S\％	$0 \cdot \mathrm{t}$	$0 \mathrm{E}^{\circ} 0$	で9t	$4 \cdot \mathrm{~S}$	\＆－0	دशpBuedS／6TS
200	960	\bigcirc	0.09	¢＇てを	5 L	$L L^{\circ} L$	$\varepsilon ゙ L Z$	60.6	9＇SI	でて	$0{ }^{\circ}$	$9 \varsigma^{\circ} \mathrm{E}$	66 L	8.4	てI－	
20．0＞	S60	0	0.09	¢＇Zを	S＇L	0で6	S¢．6	58.0	IE＇I		$\varsigma \square$	E0．${ }^{\text {I }}$	S＇ZL	で8	\＆－0	
20＊0＞	カャ＊0	\bigcirc	8.87	8．87	S＇ZZ	1900	$97^{\circ} 0$	切0	0L＇0	60	$L^{\circ} 0$	$61^{\circ} 0$	İ08	9＊	$0 \downarrow-\downarrow$－	
20＇0＞	ャで0	\bigcirc	$8^{\circ} \mathrm{E}$ ¢	$\varepsilon{ }^{\prime}$＇ 1 ¢	0＇sZ	LもO	9200	Sで0	$9 \varepsilon^{\prime} 0$	$0 \cdot 1$	L^{\prime} I	$0{ }^{\circ} \mathrm{O}$	でOL	$L \cdot S$	カでかI	
200＞	Iで0	\bigcirc	S＇で	0ヶร	¢＇zZ	£ど0	てで0	\downarrow も＊	SS＇0	$\varepsilon \cdot 1$	I＇t	\＆1．0	£＇89	S＇S	ヤI－L	
20＇0＞	$\downarrow \varepsilon^{*} 0$	T）	S＇LE	ぐてt	0．0Z	切0	$9 \varepsilon^{\circ} 0$	$\varepsilon S^{\circ} 0$	$78^{\circ} 0$	$0{ }^{\circ} \mathrm{I}$	S＇S	$97^{\circ} 0$	$6{ }^{\circ} \mathrm{E} 8$	$\chi^{\prime} \mathrm{S}$	L－0	¢ПW／วəəпర／\＆＇TS
20．0＞	It $冖$	0	$0 \cdot 02$	S．LI	S＇ZI	6t＊8	8．SE	0＇ャて	$5 \cdot 11$	60	${ }^{\circ} \mathrm{I}$	$8 \varepsilon^{\circ} \downarrow$	608	S＊	81－8	88ПW／los
200	6L＇I	D！S	S＇LS	¢＇z\＆	0．01	$79^{\circ} \mathrm{E}$	$0 \downarrow$ I	L゚II	I＇8I	$0 \cdot \mathrm{I}$	6 S	¢6\％	\＆＇78	ガカ	8－0	риерəM／ZTS
20．0＞	ヤL｀0	TDS	$8^{\prime} \varepsilon \varepsilon$	8．81	S＇Lt	$\angle \varepsilon^{*}$ I	$\varepsilon \varsigma^{\circ} 9$	6.27	$L^{\prime} Z Z$	200	50	てで乏	S＂ャ9	$6^{\circ} \mathrm{E}$	09－9¢	
20＇0＞	$\downarrow \iota^{\circ} 0$	\bigcirc	0＊0t	$0 \cdot \mathrm{Sz}$	0 ¢ ¢	LLOO	とがと	$8{ }^{\circ} \mathrm{L}$	$6{ }^{\circ} \downarrow$	60	8.0	て9 ${ }^{\circ}$	L＇89	$z^{*} 7$	$9 \varepsilon-\downarrow$ ¢	
20．0＞	$6 L^{\circ} 0$	3		¢＇ても	0＇0Z	88.0	80° I	じて	29＊0	て＇I	$8{ }^{\text {8 }}$ I	$\downarrow て ゙ 0$	S．8L	$5 \cdot$	¢て－¢	
$20 \cdot 0>$	£ ${ }^{\circ} 0$	D！	s＇Zち	£＇It	ع゙9I	てで1	$19^{\circ} 0$	6で0	てで0	$0^{\circ} \mathrm{I}$	でて	E100	8.65	$9 \cdot 5$	81－8	
20．0＞	¢で0	TDIS	8．8E	$\varepsilon \cdot 9 t$	0＇SI	$89^{\circ} 0$	0t＊ 0	$\pm \varepsilon^{\circ} 0$	¢ ¢ 0	8.0	$0{ }^{\circ} \mathrm{E}$	tio	で89	S＇S	8－b	
200＞	8で0	T3	$0 \cdot 0 \varepsilon$	S＇Lt	¢＇ZZ	L9．0	$0{ }^{\circ} \mathrm{O}$	09.0	2S．0	60	$9{ }^{\circ} \mathrm{t}$	$\downarrow て^{*} 0$	8．t9	${ }^{\circ} \mathrm{S}$ S	t－0	8nW／s．muprorg／lis
$\begin{array}{r} \text { urdd } \\ \text { as } \end{array}$	udd g	1 ${ }^{\text {a }}$ L L	$\begin{array}{r} (\%) \\ \text { K } \mathrm{E}_{\mathrm{I}} \mathrm{O} \end{array}$	$\begin{aligned} & \text { (\%) } \\ & \text { H!S } \end{aligned}$	$\begin{gathered} (\%) \\ \text { pues } \end{gathered}$	YVS	$\begin{array}{r} \text { (T/bəuu) } \\ \mathbf{B}_{\mathbf{N}} \end{array}$	$\begin{array}{r} (\mathrm{T} / \mathrm{b} ə \mathrm{u}) \\ \mathbf{8}_{\mathbf{S}} \mathrm{L} \end{array}$	$\begin{array}{r} \text { (T/bəu) } \\ \text { B, } \end{array}$	$\begin{gathered} \text { (\%) } \\ \text { عOD } \end{gathered}$	$\begin{array}{r} \text { (\%) } \\ \cdot \mathbf{W}^{\cdot} \mathbf{O} \end{array}$	u／Sp DH	$\begin{aligned} & \text { (\%) } \\ & 7{ }^{7} \mathrm{E} S \end{aligned}$	$\mathrm{H}^{\text {d }}$	（sәりうu！） ب̧dəa	I！ 0 ／גəquin N गdues

200＞	Sc＇s	3	0．0t	008	008	Lで9	で¢	1＇18	0＊t	80	$0 \cdot 1$	EL＇9	$9 \cdot 7 L$	S9	ャを－ゅI	
200＞	カs゙力	0	8＇£9	£＇91	0.02	でら	¢ $0 ¢$	S＇st	でLI	$\stackrel{\square}{1}$	8.1	$\varepsilon \varsigma^{\prime}$ ¢	70L	がL	カr－L	
z0．0＞	$9{ }^{\circ} 0$	T	8＇£	8＇£	¢＇zt	19 ¢	$6 \varepsilon^{\circ} \varepsilon$	20＇I	tL 0	$0 \cdot 1$	${ }^{1} \mathrm{I}$	59\％	9＇6t	¢＇9	L－ε	
200＞	L900	T	どIZ	8＊¢	0 －s¢	$69^{\circ} \mathrm{Z}$	6でて	28°	£90	L＇0	$6 \cdot \varepsilon$	190	て＇ts	て＇9	$\varepsilon-0$	¢กJ／\％rend／0zTS
20．0＞	$80^{\circ} \mathrm{Z}$	5	0．0s	$0 \cdot \varsigma \varepsilon$	0＇SI	$9 \varepsilon^{\prime} L$	て＇て£	8 8．	がてz	$0 \cdot 7$	$\varepsilon \cdot \%$	$76{ }^{\text {\％}}$	z＇88	て＇L	$9 \varepsilon-z \tau$	
z0．0＞	ャモ゙Z	3	0．0S	S＇LZ	s＇zz	16.5	6 t \％	8 ¢ \dagger	9.02	$9 \cdot 5$	$I^{\prime} Z$	$28^{\prime} \downarrow$	$0 \cdot 96$	$9{ }^{\circ} \mathrm{L}$	てz－zI	
200＞	$60^{\circ} \mathrm{I}$	3	ع＇9t	$8^{\prime} \varepsilon \tau$	0．08	tぐ̇	06 Z	$L L^{\circ} \mathrm{E}$	$6 L^{\circ} \mathrm{I}$	${ }^{\prime} \mathrm{Z}$	L＇t	$88^{\circ} 0$	＋${ }^{\text {c }}$	L＇9	てI－9	nw／Ioqnus．．ry
200＞	$92^{\circ} 0$	T	8＇ε ¢	ع＇9£	0．0t	16.7	$8 L^{\circ} 0$	$90^{\circ} 0$	80°	90	$8^{\prime} \mathrm{Z}$	trio	8.95	8 S	9－0	peurbumm／8ITS
200＞	SLO	10	どโ¢	と＇It	¢ $\llcorner 2$	01＇t	98.1	50\％	860	$\varepsilon \cdot L$	でE	$0{ }^{\circ} 0$	8.05	t＇8	09－で	
200＞	$8 \varepsilon^{\circ} 0$	15	$0 \cdot 0 \varepsilon$	S＇LE	¢＇zદ	1と＇0	$6 \varepsilon^{\circ} 0$	Lく＇I	て ε^{*} I	＋6	ع00	เど0	6 ES	08	でって	
200＞	$9 \varepsilon^{\circ} 0$	10	$0 \cdot \mathrm{sc}$	¢＇z\＆	¢＇z¢	ャで0	1で0	$99^{\circ} 0$	$28^{\circ} 0$	でI	80	$61^{\circ} 0$	0.85	\＆＇9	ャでてI	
200＞	L $\varepsilon 0$	3	0．0t	S＇LZ	¢＇zع	St＇0	$\varepsilon 1^{\circ} 0$	59°	06.0	\downarrow＇I	ε / Z	$61^{\circ} 0$	L．85	8＇5	ZI－9	
200＞	08°	I	$0 \cdot \mathrm{sz}$	S＇LE	¢＇LE	St＇0	2r＊0	$05^{\circ} 0$	$6 L^{\circ} 0$	$0 \cdot \mathrm{I}$	ガカ	LI．0	8.65	9.5	9－0	9пW／əsuipəy／EITS
$\begin{array}{r} \text { udd } \\ a \mathbf{S} \\ \hline \end{array}$	$\begin{array}{r}\text { udd } \\ \mathbf{g} \\ \hline\end{array}$	${ }^{\mathbf{1} \times 2 \mathrm{~L}}$		$\begin{aligned} & \text { (\%) } \\ & \text { MIS } \end{aligned}$	$\begin{array}{r} \text { (\%) } \\ \text { puts } \end{array}$	tVS	$\begin{array}{r} (7 / \text { bou }) \\ \mathbf{E}_{\mathbf{N}} \\ \hline \end{array}$		$\begin{array}{r} \text { (I/bәш) } \\ \mathbf{~}, ~ \\ \hline \end{array}$	$\begin{array}{r} \text { (\%) } \\ \text { عOD } \\ \hline \end{array}$	$\begin{array}{r} \text { (\%) } \\ \mathbf{W C O} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{w} / \mathrm{SP} \\ \mathrm{OT} \\ \hline \end{array}$	$\begin{aligned} & (\%) \\ & { }^{2}{ }^{2} S \\ & \hline \end{aligned}$	$\mathrm{H}^{\text {d }}$	（sวчจu！） पldəa	

9 I －ヶどどて

Permit 267C－WY State Lease 42804 Amendment
Supporting Information－ 2.7 Bentonite Performance Minerals，LLC
Permit 267C－WY State Lease 42804 Amendment

[^0]

 These results apply only to the samples tested.
Abbreviations for extractants: $P E=$ Saturated P

Supporting Information-2.7 Permit 267C - WY State Lease 42804 Amendment Bentonite Performance Minerals, LLC
$81-\mathrm{s} v \in \mathrm{cz}$
Karen Secor, Soil Lab Supervisor Miscellaneous Abbreviations: SAR= Sodium Adsorpion Ratio, CEC= Cation
 These results appiy only to the samples tested.

 Bentonite Performance Minerals, LLC

${ }^{615 v e c t z}$

peaseal seldubs elt 여 Kifuo Kidde sinnsed esa

S1408494－021	SL 12	0.4	12.5	43.8	43.8	Silly Clay	0.36	<0.02
S1408494－022	SL 12	4－10	7.5	40.0	52.5	sulty Clay	0.34	<0.02
S1408494－023	SL 12	10.18	7.5	40.0	52.5	Silty Clay	0.32	＜0．02
S1408494－024	SL 12	18.36	15.0	28.8	56.3	Silty Clay	0.48	<0.02
S1408494－025	SL． 13	$0-6$	37.5	37.5	25.0	Loam	0.30	<0.02
S1408494－026	SLL 13	6－12	32.5	27.5	40.0	Clay	0.31	<0.02
S1408494－027	SL 13	12－24	32.5	32.5	35.0	Clay Loarn	0.36	＜0．02
S1408494－028	SL 13	2442	32.5	37.5	30.0	Clay Loam	0.38	<0.02
S1408494－029	SL 13	42－60	27.5	41.3	31.3	Clay Loam	0.75	＜0．02
S1408494－030	SL 18	$0 \cdot 6$	40.0	36.3	23.8	Loam	0.26	<0.02
S1408494－031	SL． 18	6－12	30.0	23.8	46.3	Clay	1.09	<0.02
S1408494．032	SL18	12－22	22.5	27.5	50.0	Clay	2.34	＜0．02
S1408494－033	SL 18	22－36	15.0	35.0	50.0	Clay	2.08	<0.02
S1408494－034	SL 20	0－3	35.0	43.8	21.3	Loam	0.67	<0.02
S1408494－035	SL20	$3-7$	42.5	33.8	23.8	Loam	0.76	<0.02
S1408494036	SL 20	7－14	20.0	16.3	63.8	Clay	4.54	<0.02
S1408494．037	SL 20	1434	30.0	30.0	40.0	clay	5.55	＜0．02

[^1]Permit 267 C －WY State Lease 42804 Amendment
Supporting Information－ 2.7 Bentonite Performance Minerals，LLC
Permit 267 C－WY State Lease 42804 Amendment
al aldunes al q897
s

mdd	udd		\％
um！	H0109	өmpxa	к⿺𠃑

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7

Addendum 2.7.3.45.B

Profile Descriptions

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7
Profile BPM SL-1; Broadhurst; map unit 8; 13T 0552767E, 4970962N

Obs. Method	Horizon	Depth (in)	Texture	\qquad	Color Dry-Moist	Structure	Roots	Reaction to 1 N HCl
SP	A	0-4	CL		$\begin{gathered} 2.5 \mathrm{Y} 4 / 3 \\ 3 / 2 \end{gathered}$	gr	Fm f/m	NR
SP	Bw	4-8	SiCL		$\begin{gathered} 2.5 \mathrm{Y} 4 / 3 \\ 3 / 2 \end{gathered}$	1, f, sbk	M f/m	NR
SP	C1	8-15	SIC		$\begin{gathered} 2.5 \mathrm{Y} 5 / 2 \\ 4 / 3 \end{gathered}$	1, f, sbk	M f/m	NR
Auger below 30"	C2	15-36	C		$2.5 \overline{\mathrm{Y}} 4 / 3$	massive	$\begin{gathered} \hline \text { Common } \\ \text { To } 28 " \end{gathered}$	NR
Auger below 30"	C3	36-60	SCL		$2.5 \overline{\mathrm{Y}} 4 / 3$	massive	---	NR

Profile BPM SL-2; Wetland Soils; map unit 8a; 13T 0552795E, 4970878N

Obs. Method	Horizon	Depth (in)	Texture	Reck Fragments (\%)	Color Dry-Moist	Structure	Roots	Reaction to 1 N HCl
SP	O	$0-2$	SiC	--	-- $10 \mathrm{YR} 3 / 2$	fibrous	Vmf	NR
SP	A	$2-8$	SiC	--	- $7.5 \mathrm{YR} 3 / 2$	$1, \mathrm{f}$, sbk	Vmf	NR
SP	C	$8-18+$	C	--	Gleying G25/5B	massive	---	NR

Profile BPM SL-3; Querc; map unit 5; 13T 0552419E, 4971091N

Obs. Method	Horizon	Depth (in)	Texture	Rock Fragments (\%)	Color Dry- Moist	Structure	Roots	Reaction to 1 N HCl
SP	A1	0-2	L	---	$\begin{gathered} \hline 10 \mathrm{YR} 4 / 4 \\ 3 / 2 \end{gathered}$	gr	Vmf	NR
SP	A2	2-7	CL	1\%	$\begin{gathered} \hline 10 \mathrm{YR} 4 / 4 \\ 3 / 2 \end{gathered}$	gr	Vmf	NR
SP	Bt	7-14	C	3\%	$\begin{gathered} 10 \mathrm{YR} 4 / 2 \\ 2 / 2 \\ \hline \end{gathered}$	2, f/m, sbk	M f/m	NR
SP	C1	14-24	C	10\%	$\begin{gathered} \hline 10 \mathrm{YR} 4 / 2 \\ 3 / 3 \\ \hline \end{gathered}$	massive	C f/m	NR
Auger	C2	24-40	---	---	--	---	---	NR
Auger	Cr	40+	CLAY/SHALE			--	---	---

Profile BPM SL-4; Grummit; map unit 2; 13T 0552217E, 4971406N

Obs. Method	Horizon	Depth (in)	Text.	$\begin{gathered} \hline \text { Rock } \\ \text { Fragments } \\ (\%) \end{gathered}$	Color Dry- Moist	Structure	Roots	Reaction to 1 N HCl
Road cut bank	A	0-5	L	5%, shale-chips	$\begin{gathered} 10 \mathrm{YR} 5 / 2 \\ 3 / 2 \end{gathered}$	gr	Vmf	NR
Road	C1	5-10	CL	5\%, shale-chips	$\begin{gathered} \hline 10 \text { YR } 4 / 2 \\ 4 / 2 \\ \hline \end{gathered}$	massive	M f	NR
Road cut bank	C2	10-18	CL	$\begin{gathered} 10 \%, \text { shale- } \\ \text { chips } \end{gathered}$	$\begin{gathered} 10 \mathrm{YR} 4 / 4 \\ 4 / 2 \end{gathered}$	massive	Ff	NR
cut bank	R	18+	Brittle Shale				---	NR

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7
Profile BPM SL-5; Querc; map unit 5; 13T 0552782E, 4971477N

Obs. Method	Horizon	Depth (in)	Texture	Rock Fragments $(\%)$	Color Dry-Moist	Structure	Roots	Reaction to 1 N HCl
SP	A	$0-6$	L	--	$10 \mathrm{YR} 4 / 4$ $3 / 2$	gr	Vm, f	NR
SP	Bt	$6-13$	L	3% shale chips	$10 \mathrm{YR} 4 / 4$ $3 / 2$	$2, \mathrm{f}, \mathrm{sbk}$	$\mathrm{M}, \mathrm{f} / \mathrm{m}$	NR
SP	C 1	$13-24$	L	5%	$10 \mathrm{YR} 4 / 2$ $2 / 2$	massive	F, f	NR
A	C 2	$24-48$	---	--	-	--	--	-
A	Cr	$48+$	Soft Clay Shale					

Profile BPM SL-6; Grummit; map unit 2a; 13T 0552614E, 4971436N

Obs. Method	Horizon	Depth (in)	Texture	Rock Fragments (\%)	Color Dry-Moist	Structure	Roots	Reaction to 1 N HCl
SP	A	$0-5$	L	---	$10 \mathrm{YR} 3 / 2$ $2 / 2$	gr	$\mathrm{M}, \mathrm{f} / \mathrm{m}$	NR
SP	Cl	$5-15$	CL	1%	$10 \mathrm{YR} 5 / 2$ $4 / 2$	massive	$\mathrm{M}, \mathrm{f} / \mathrm{m}$	NR
A	C 2	$15-36$	CL	3%	$10 \mathrm{YR} 4 / 4$ $4 / 3$	massive	$\mathrm{C}, \mathrm{m} / \mathrm{c}$	NR
A	Cr	$36+$	CL	--	--	platy	-	NR

Profile BPM SL-7; Louviers; map unit 3; 13T 0551547E, 4971764N

Obs. Method	Horizon	Depth (in)	Texture	Rock Fragments $(\%)$	Color Dry-Moist	Structure	Roots	Reaction to 1 N HCI
SP	A	$0-3$	C	1%	$2.5 \mathrm{Y} 3 / 2$ $3 / 2$	$2, \mathrm{f}$, sbk	C,f	NR
SP	C	$3-12$	C	massive	$2.5 \mathrm{Y} 3 / 2$ $3 / 2$	massive	F,f	NR
SP	Cr	$12-15+$	Soft Clay/Shale					massive

Profile BPM SL-8; Louviers over bentonite OC, inclusion in map unit 5; 13T 0552049E, 4971122N

Obs. Method	Horizon	Depth (in)	Texture	Rock Fragments (\%)	Color Dry-Moist	Structure	Roots	Reaction to 1 N HCl
SP	A	$0-2$	CLAY	5% mixed ss/sh channers	$2.5 \mathrm{Y} 5 / 2$ $4 / 2$	$2, \mathrm{f}$, sbk	--	NR
SP	Cr	$2-10+$	CLAY	Bentonite bed			--	NR

Profile BPM SL-9; Spangler taxadjunct (shallow); map unit RC1; 13T 0551838E, 4971192N

Obs. Method	Horizon	Depth (in)	Texture	Rock Fragments (\%)	Color Dry-Moist	Structure	Roots	Reaction to 1 N HCl
SP	A	$0-3$	SL	1% ss channers	$10 \mathrm{YR} 5 / 2$ $3 / 2$	gr	Mf	NR
SP	Bt	$3-11$	C	1% ss channers	$10 \mathrm{YR} 3 / 3$ $2 / 2$	$3 \mathrm{~m} / \mathrm{ccol}$. breaking to $2, \mathrm{~m}, \mathrm{sbk}$	Cm / c	VSL
SP	R	$11+$	Hard Sandstone					
-	-	-						

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7
Profile BPM SL-10; Querc; map unit 5; 13T 0551676E, 4971147N

Obs. Method	Horizon	Depth (in)	Texture	Rock Fragments (\%)	Color Dry- Moist	Structure	Roots	Reaction to $1 \mathbf{N}$ HCl
SP	A	$0-4$	2	5% shale chips	$10 \mathrm{YR} 2 / 1$ $2 / 1$	gr	Vm f	NR
SP	Bt	$4-12$	C	50% shale chips	$10 \mathrm{YR} 2 / 1$ $2 / 1$	$3, \mathrm{f} / \mathrm{m}, \mathrm{sbk}$	$\mathrm{Vm} \mathrm{f} / \mathrm{m}$	NR
SP	Cr	Soft Fissile Shale 10YR $2 / 1$						$\mathrm{Vm} \mathrm{f/m}$

Profile BPM SL-11; Butche; map unit 1; 13T 0551657E, 4971039N

Obs. Method	Horizon	Depth (in)	Texture	Rock Fragments (\%)	Color Dry-Moist	Structure	Roots	Reaction to 1 N HCl
SP	A	$0-4$	L	$1 \% \mathrm{ss}$ channers	$10 \mathrm{YR} 4 / 4$ $3 / 2$	gr	Mf	NR
SP	Bw	$4-11$	SCL	$5 \% \mathrm{ss}$ channers	$---\mathrm{YR} 3 / 2$	$1, \mathrm{f}, \mathrm{sbk}$	$\mathrm{Vm} \mathrm{f} / \mathrm{m}$	NR
SP	R	$11+$	--	--	--	--	f	NR

Profile BPM SL-12; Grummit; map unit 2a; 13T 0552594E, 4970855N

Obs. Method	Horizon	Depth (in)	Texture	Rock Fragments (\%)	Color Dry-Moist	Structure	Roots	Reaction to 1 N HCl
SP	A	$0-4$	L	3%, shale channers	$10 \mathrm{YR} 4 / 2$ $3 / 2$	gr	M f	NR
SP	Bw	$4-10$	CL	30% shale channers	$10 \mathrm{YR} 3 / 2$ $2 / 2$	$1, \mathrm{f}$, sbk	$\mathrm{M} \mathrm{f} / \mathrm{m}$	NR
SP	C 1	$10-18$	C	50% shale channers	$10 \mathrm{YR} 4 / 3$ $3 / 3$	massive	Cm / c	NR
A	C 2	$18-36$	--	50%, shale channers	-	massive	--	--
A	Cr	$36+$	Soft gray shale					--

Profile BPM SL-13; Recluse; map unit 6; 13T 0551993E, 4970872N

Obs. Method	Horizon	Depth (in)	Texture	Rock Fragments (\%)	Color Dry-Moist	Structure	Roots	Reaction to 1 N HCl
SP	A	$0-6$	SL	<1	$10 \mathrm{YR} 4 / 4$ $3 / 2$	gr	--	NR
SP	$\mathrm{Bt1}$	$6-12$	CL	<1	$10 \mathrm{YR} 4 / 3$ $3 / 4$	$2 \mathrm{f} / \mathrm{m} \mathrm{sbk}$	--	NR
SP	Bt 2	$12-24$	CL	<1	$10 \mathrm{YR} 4 / 3$ $3 / 4$	3 mabk	--	NR
A	Bk 1	$24-42$	CL	3	$10 \mathrm{YR} 5 / 2$ $4 / 2$	1 msbk	--	V
A	Bk 2	$42-60+$	CL	3	$10 \mathrm{YR} 6 / 2$ $4 / 2$	massive	--	V

Profile BPM SL-14; Querc; map unit 5; 13T 0551730E, 4970580N

Obs. Method	Horizon	Depth (in)	Texture	Rock Fragments (\%)	Color Dry-Moist	Structure	Roots	Reaction to 1 N HCl
-See previous querc sbk + gr NR; 4-12 Bt 3 m sbk NR; 12-24 C-auger massive NR								

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7
Profile BPM SL-15; Louviers; map unit 3/OC; 13T 0552312E, 4970599N

Obs. Method	Horizon	Depth (in)	Texture	Rock Fragments (\%)	Color Dry-Moist	Structure	Roots	Reaction to 1 N HCl
SP	A	$0-2$	C	3 siltstone shale	$2.5 \mathrm{Y} 6 / 2$ $4 / 2$	1 fsbk	ff	NR
SP	C	$2-8$	C	15% Platy shale	$-5 \mathrm{Y} 3 / 2$	massive	ff	NR
SP	Cr	$8+$	Soft Platy Shale		$-\overline{\mathrm{Y}} 2 / 1$	-	--	NR

Profile BPM SL-16; Querc, map unit 5; 13T 0552183E, 4970490N

Obs. Method	Horizon	Depth (in)	Texture	Rock Fragments (\%)	$\begin{gathered} \text { Color } \\ \text { Dry-Moist } \end{gathered}$	Structure	Roots	Reaction to 1 N HCl
SP	A	0-4	See previous querc; same as SL-15					NR
SP	AB	4-7						NR
A	Bt	7-15						NR
A	C	$15+$						NR

Profile BPM SL-17; Reclaimed Lands, map unit RL; 13T 0551851E, 4970004N

Obs. Method	Horizon	Depth (in)	Texture	Rock Fragments (\%)	$\begin{gathered} \text { Color } \\ \text { Dry-Moist } \end{gathered}$	Structure	Roots	Reaction to 1 N HCl
SP	E	0-2	C	---	$\begin{gathered} \hline 2.5 \mathrm{Y} 7 / 1 \\ 5 / 2 \end{gathered}$	1 fgr	---	NR
SP	C	$2+$	Replaced Clay Overburden			massive Not Sampled	--	NR

Profile BPM SL-18; Unnamed Argiustol; map unit 9 13T 0551411E, 4969962N

Obs. Method	Horizon	Depth (in)	Texture	Rock Fragments (\%)	$\begin{gathered} \text { Color } \\ \text { Dry-Moist } \end{gathered}$	Structure	Roots	Reaction to $1 \mathbf{N}$ HCl
SP	A	0-6	SL	<1	$\begin{gathered} 10 \mathrm{YR} 5 / 3 \\ 3 / 3 \end{gathered}$	gr	M f	NR
SP	Bt	6-12	CL	<1	$\begin{gathered} \text { 10YR } 3 / 2 \\ 3 / 1 \end{gathered}$	3, c, col. Breaks to 3, c, ABK Hard	Fm	NR
SP	Bk	12-22	C	<1	$10 \mathrm{YR} 3 / 2$	1, m, col	Fm	ST with masses V
A	Cy	22-36	C	---	$\overline{--}$	massive	--	NR
A	Cr	36+	Soft Sandy Clay Shale			--	--	--

Profile BPM SL-19; Louviers inclusion; map unit 1a; 13T 0551769E, 4970278N

Obs. Method	Horizon	Depth (in)	Texture	Rock Fragments (\%)	Color Dry-Moist	Structure	Roots	Reaction t $1 \mathbf{N}$ HCl
Very shallow (2-3") over clay Cr								

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7
Profile BPM SL-20; Querc; map unit 5; 13T 0551631E, 4970416N

Obs. Method	Horizon	Depth (in)	Texture	Rock Fragments $(\%)$	Color Dry-Moist	Structure	Roots	Reaction to 1 N HCl
SP	A	$0-3$	SCL	<1	$10 \mathrm{YR} 5 / 3$ $3 / 3$	gr	$\mathrm{Vm} \mathrm{f/m}$	NR
SP	Bt	$3-7$	SCL	<1	$10 \mathrm{YR} 3 / 4$ $3 / 2$	3 mabk	Cm	NR
SP	Cy	$7-14$	Clay	3 shale chips	$10 \mathrm{YR} 4 / 2$ $3 / 2$	-	Ff / m	NR
A	C	$14-34+$	Soft Clay Shale					-

Addendum 2.7.3.45.C

Representative Profile and Map Unit Photographs

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7

Figure 2.7.3.C1. Map Unit 1/Butche Series, Profile SL-11.

Figure 2.7.3.C2. Map Unit 1/Butche Series, Profile SL-11. General Aspect

Figure 2.7.3.C3. Map Unit 1a, Butche/Spangler Complex. General Aspect.

Figure 2.7.3.C4. Map Unit 2/Grummit Series, Profile SL-4.

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7

Figure 2.7.3.C5. Map Unit 2/Grummit Series, Profile SL-4. General Aspect.

Figure 2.7.3.C6. Map Unit 2a/Steep Grummit Series, General Aspect.

Figure 2.7.3.C7. Map Unit 3/Louviers, Profile SL-7.

Figure 2.7.3.C8. Map Unit 3/Louviers, Profile SL-7. General Aspect

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information -2.7

Figure 2.7.3.C9. Map Unit 5/Querc, Profile SL-3.

Figure 2.7.3.C10. Map Unit 5/Querc. Profile SL-3. General Aspect.

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information -2.7

Figure 2.7.3.C11. Map Unit 6/Recluse, Profile SL-13.

Figure 2.7.3.C12. Map Unit 6/Recluse. Profile SL-3. General Aspect.

Figure 2.7.3.C13. Map Unit 7/Spangler taxadjunct, Profile SL-9.

Figure 2.7.3.C14. Map Unit 7/Spangler taxadjunct. Profile SL-9. General Aspect.

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7

Figure 2.7.3.C15. Map unit 8/Broadhurst, Profile SL-1.

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information -2.7

Figure 2.7.3.C16. Map Unit 8a/Wetland Soils, Profile SL-2.

Figure 2.7.3.C17. Map unit 8a/Wetland Soils, Profile SL-2; General Aspect.

Permit 267C - WY State Lease 42804 Amendment
Supporting Information -2.7

Figure 2.7.3.C18. Map Unit 9/Unnamed Argiustol, Profile SL-18.

Figure 2.7.3.C19. Map unit 9/Unnamed Argiustol, Profile SL-18. General Aspect.

Figure 2.7.3.C20. RL Map unit/Reclaimed Land, Profile SL-17.

Figure 2.7.3.C21. RL Map unit/Reclaimed Land, Profile SL-17. General Aspect.

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information -2.7

Figure 2.7.3.C22. Map Unit RC1, Ravine Complex 1. General Aspect.

Figure 2.7.3.C23. Map Unit RC2, Ravine Complex 2. General Aspect.

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information -2.7

Figure 2.7.3.C24. Louviers/Bare Outcrop Complex; General Aspect.

Addendum 2.7.3.45D

NRCS Soil Series Descriptions

BROADHURST SERIES

The Broadhurst series consists of very deep, well drained soils formed in clayey material derived from acid shales on colluvial fans and terraces. These soils have very slow permeability. Slopes range from 0 to 15 percent. Mean annual precipitation is about 15 inches, and mean annual air temperature is about 47 degrees F.

TAXONOMIC CLASS: Very-fine, smectitic, acid, mesic Torrertic Ustorthents
TYPICAL PEDON: Broadhurst clay - in native grass. When described the soil was dry below 20 inches. (Colors are for dry soil unless otherwise stated.)

A--0 to 3 inches; light brownish gray (10YR 6/2) clay, very dark grayish brown (10YR 3/2) moist; weak thick platy structure; very hard, very firm, sticky and plastic; few roots; moderately acid; abrupt smooth boundary. (1 to 4 inches thick)

AC--3 to 16 inches; grayish brown (10YR 5/2) clay, dark grayish brown (10YR 4/2) moist; weak coarse blocky and subangular blocky structure; very hard, very firm, sticky and plastic; few roots; very strongly acid; gradual smooth boundary. (8 to 15 inches thick)

C--16 to 41 inches; grayish brown (10YR 5/2) and light brownish gray (10YR 6/2) clay; dark grayish brown (10YR 4/2) moist; massive; extremely hard, very firm, sticky and plastic; very strongly acid; clear smooth boundary.

Cz-41 to 60 inches; light brownish gray (10YR 6/2) clay, very dark grayish brown (10YR 3/2) crushing to dark grayish brown (10YR 4/2) moist; massive; hard, very firm, sticky and plastic; common fine fragments of shale; common fine nests of gypsum and other salts; very strongly acid.

TYPE LOCATION: Butte County, South Dakota; about 7 miles north and 7 miles west of Belle Fourche; 1400 feet west and 1880 feet north of the southeast corner of sec. 4 , T. 9 N., R. 1 E.

RANGE IN CHARACTERISTICS: Colors throughout the soil are largely inherited from the parent rock. The control section averages between 60 and 70 percent clay. The soil has an Ustic moisture regime that borders on Aridic. Consistence is hard to extremely hard when dry and very firm when moist. When the soil is dry, cracks $1 / 2$ to 1 inch wide and several feet long extend downward for 20 inches or more. The soil typically is very strongly acid but ranges from extremely acid to moderately acid.

A and AC horizons have hue of 10 YR or 2.5 Y , value of 5 or 6 and 3 or 4 moist, and chroma of 1 or 2 .
The C horizon has hue of $10 \mathrm{YR}, 2.5 \mathrm{Y}$, or 5 Y ; value of 5 or 6 and 3 or 4 moist; and chroma of 1 or 2 . Few or common partially weathered very fine fragments of shale are in the C horizon in most pedons. Nests of gypsum and other salts are few or common in the lower part of the C horizon.

COMPETING SERIES: There are no other series in the family.

GEOGRAPHIC SETTING: Broadhurst soils are on colluvial fans and terraces. Slope gradients range from 0 to 15 percent. These soils formed in clayey material derived from acid shales. Mean annual air temperature ranges from 43 to 48 degrees F , and mean annual precipitation ranges from 15 to 18 inches.

GEOGRAPHICALLY ASSOCIATED SOILS: These are the Demar, Graner, and Grummit soils. Demar soils have argillic horizons and are on similar positions as the Broadhurst soils. Graner soils are friable throughout and are on adjacent undulating to rolling uplands. Grummit soils have shale within depths of 20 inches and are on steeper parts of the landscape.

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7
DRAINAGE AND PERMEABILITY: Well drained. Runoff is medium to very high depending on slope. Permeability is very slow except after dry periods when the initial intake in cracks is rapid.

USE AND VEGETATION: Used primarily for rangeland. Native vegetation is western wheatgrass, green needlegrass, Montana wheatgrass, forbs, and shrubs.

DISTRIBUTION AND EXTENT: Western South Dakota. The series is of small extent.

MLRA SOIL SURVEY REGIONAL OFFICE (MO) RESPONSIBLE: Denver, Colorado

SERIES ESTABLISHED: Butte County, South Dakota, 1970.
REMARKS: Diagnostic horizons and features recognized in this pedon: ochric epipedon - the zone from the surface of the soil to a depth of 13 inches (A and AC horizons). The soil has an Ustic moisture regime that borders on Aridic. It will be reclassified to the Torrertic subgroup when it is approved.

BUTCHE SERIES

The Butche series consists of shallow, well drained to excessively drained soils formed in loamy materials weathered from sandstone. Permeability is moderate or moderately rapid. Slopes range from 1 to 60 percent. Mean annual precipitation is about 17 inches, and mean annual temperature is about 46 degrees F.

TAXONOMIC CLASS: Loamy, mixed, superactive, nonacid, mesic Aridic Lithic Ustorthents

TYPICAL PEDON: Butche cobbly loam - on a west-facing convex slope of 25 percent under native grass. When described the soil was moist to 10 inches. (Colors are for dry soil unless otherwise stated.)

A--0 to 4 inches; dark grayish brown (10YR 4/2) cobbly loam, very dark grayish brown (10YR 3/2) moist; weak fine granular structure; soft, very friable; coarse fragments make up about 20 percent by volume; neutral; clear wavy boundary. (2 to 5 inches thick)

C--4 to 10 inches; pale brown (10YR 6/3) cobbly loam, brown (10YR 4/3) moist; weak medium and coarse subangular blocky structure; slightly hard, very friable; coarse fragments make up about 30 percent by volume; neutral; abrupt wavy boundary.

R-10 to 60 inches; very pale brown (10YR 7/4) indurated sandstone; neutral.

TYPE LOCATION: Custer County, South Dakota; about 3 miles west and 7 miles north of Buffalo Gap; 835 feet north and 1000 feet west of the southeast corner of sec. 23, T. 5 S., R. 6 E., on south side of trail.

RANGE IN CHARACTERISTICS: The soil ahs an Ustic moisture regime that borders on Aridic. Depth to sandstone ranges from 7 to 20 inches. Coarse fragments ranging in size from channery sandstone fragments up to massive slabs of sandstone about 3 feet in diameter are on the surface and mixed throughout the A and C horizons. Some pedons also have rounded cobble and stones of igneous and metamorphic rocks unrelated to the underlying sedimentary sandstone. The coarse fragments and flagstones make up 10 to 35 percent by volume of the soil mass. The control section typically is loam averaging between 15 and 25 percent clay and more than 15 percent fine sand or coarser.

The A horizon has hue of $10 Y \mathrm{R}$ or 7.5 YR , value of 4 to 6 and 2 to 4 moist, and chroma of 1.5 to 3 dry or moist. Where the color value is as dark or darker than 5.5 and 3.5 moist, the A horizon is too thin for a mollic epipedon. The A horizon is cobbly loam, cobbly fine sandy loam, stony loam, stony fine sandy loam, channery loam, loam, sandy loam, or fine sandy loam. It is slightly acid or neutral.

The C horizon typically has 10 YR hue, but some pedons have hue of 7.5 YR or 5 YR due to variations in color of the underlying sandstone, value of 5 to 7 and 4 to 6 moist, and chroma of 2 to 6 . The C horizon is cobbly loam, channery loam, stony loam, stony fine sandy loam, channery fine sandy loam, loam, sandy loam and fine sandy loam. It ranges from slightly acid to slightly alkaline. In some pedons there is an incipient cambic horizon 1 to 2 inches thick that is intermediate in color between the A and C horizon and has more pronounced structure than the C horizon. It is not continuous and is irregular in its shape and occurrence.

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7
The R horizon is very hard sandstone and is hard and difficult to penetrate. It lacks free carbonates.

COMPETING SERIES: These are the Moret soils. Moret soils formed in a slate-like shale.

GEOGRAPHIC SETTING: Butche soils are sloping to very steep on uplands with gradients ranging from 1 to 60 percent. The Butche soils are formed in loamy materials weathered from non-calcareous sandstone. The mean annual temperature ranges from 45 to 49 degrees F, and mean annual precipitation from 13 to 18 inches. Elevations range from 3000 to 5500 feet.

GEOGRAPHICALLY ASSOCIATED SOILS: These are the Boneek, Canyon, Lakoa, Nevee and Spearfish soils. Boneek soils are on high terraces above the Butche soils and have fine argillic horizons. Canyon and Spearfish are on similar landscapes. They have carbonates and paralithic beds within depths of 20 inches. Lakoa soils are on north-facing wooded slopes and are deep soils with argillic horizons. Nevee soils are formed in deep calcareous alluvium and are on fans and terraces below the Butche soils.

DRAINAGE AND PERMEABILITY: Well drained to excessively drained. Surface runoff is low to high depending on slope. Permeability is moderate or moderately rapid.

USE AND VEGETATION: Used almost entirely for grazing. Native grasses include little bluestem, sideoats grama, western wheatgrass, needleandthread, and sedges. Short, limby ponderosa pine, growing singly or in clumps, are scattered throughout the landscape.

DISTRIBUTION AND EXTENT: Western South Dakota and eastern Wyoming in the foothills of the Black Hills. The series is of moderate extent.

MLRA SOIL SURVEY REGIONAL OFFICE (MO) RESPONSIBLE: Denver, Colorado

SERIES ESTABLISHED: Butte County, South Dakota, 1970.

REMARKS: Diagnostic horizons and features recognized in this pedon are: ochric epipedon - the zone from the surface of the soil to a depth of about 5 inches (A horizon). The soil has an Ustic moisture regime that borders on Aridic. It will be reclassified to the Aridic Lithic supbgroup when it is approved.

National Cooperative Soil Survey

U.S.A.

GRUMMIT SERIES

The Grummit series consists of shallow, well drained soils formed in clayey residuum from acid shale on uplands. Permeability is moderate or moderately slow. Slopes range from 2 to 60 percent. Mean annual precipitation is about 15 inches, and mean annual temperature is about 46 degrees F.

TAXONOMIC CLASS: Clayey, smectitic, acid, mesic, shallow Aridic Ustorthents
TYPICAL PEDON: Grummit clay - on a convex slope of 5 percent in native grass. When described, the soil was moist to bedded shale. (Colors are for dry soil unless otherwise stated)

A--0 to 3 inches; light brownish gray (10YR 6/2) clay, dark grayish brown (10YR 4/2) moist; moderate fine granular structure; loose, friable; many fine roots; many very fine fragments of shale; very strongly acid; clear smooth boundary. (2 to 6 inches thick)

C1--3 to 7 inches; grayish brown (10YR 5/2) clay, dark grayish brown (10YR 4/2) moist; weak coarse subangular blocky structure; hard, friable; many fine roots; 25 percent very fine fragments of shale; extremely acid; gradual wavy boundary.

C2-7 to 17 inches; grayish brown (10YR 5/2) and gray ($2.5 \mathrm{Y} 5 / 1$) clay, dark grayish brown (10YR 4/2) and dark gray ($2.5 \mathrm{Y} 4 / 1$) moist; common distinct mottles of yellowish brown (IOYR 5/6); weak coarse subangular blocky structure; hard, friable; partially weathered fragments of shale make up 35 percent by volume; common roots; extremely acid; clear smooth boundary.

Cr--17 to 40 inches; gray (10YR 6/1) brittle platy shale, dark gray (10YR 4/1) moist; common medium distinct stains of yellowish brown (10YR $5 / 8$); very hard; extremely acid.

TYPE LOCATION: Butte County, South Dakota; about 4 miles west and 2 miles north of Belle Fourche; 200 feet east and 1800 feet north of the southwest corner of sec. 30, T. 9 N., R. 2 E.

RANGE IN CHARACTERISTICS: Depth to shale ranges from 10 to 20 inches. Colors throughout the soil are inherited from the shale. The horizons overlying the bedded shales typically average 50 to 65 percent clay but ranges from 35 to 65 percent clay. The low clay percentage is due to sand-size shale fragments. Consistence ranges from loose to hard when dry but is friable when moist. The soil ranges from strongly acid to extremely acid.

The A horizon has hue of 10 YR or 2.5 Y , value of 5 or 6 and 3 or 4 moist, and chroma of 1 or 2 dry or moist. It typically is clay but is clay loam in some pedons. It has weathered fragments of shale that make up 5 to 35 percent by volume. The A horizon contains less than 1 percent more organic matter than the C .

The C horizon has hue of $10 \mathrm{YR}, 2.5 \mathrm{Y}$, or 5 Y ; value of 5 or 6 and 3 or 4 moist; and chroma of 1 or 2 . Weathered fragments of shale make up 20 to over 50 percent by volume of the C horizon.

The fissile shale is very hard and brittle and will not disperse in water or in sodium hexametaphosphate.

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7
COMPETING SERIES: There are no other soils in the same family. Other competing soils are the Dupree, Lismas, and Samsil series. Dupree soils are more moist and have firm to extremely firm consistence. Lismas soils are more alkaline and have a firmer consistence. Samsil soils contain carbonates and are alkaline.

GEOGRAPHIC SETTING: Grummit soils are gently sloping to very steep on uplands. Slope gradients range from 2 to 60 percent. The soil formed in clayey residuum weathered from acid shales. Mean annual temperature ranges from 43 to 50 degrees F, and mean annual precipitation is about 12 to 18 inches.

GEOGRAPHICALLY ASSOCIATED SOILS: These are the Broadhurst, Graner, and Demar soils. All of these associated soils are deeper to bedded shale. The Broadhurst and Demar soils are on adjacent, nearly level to gently sloping fans and terraces. In addition, Demar soils have argillic horizons. Graner soils are on nearby undulating to rolling uplands. Grummit soils are also associated with rock outcrop.

DRAINAGE AND PERMEABILITY: Well drained. Runoff is slow or medium. Permeability is moderate or moderately slow in the upper part and moderate in the underlying material.

USE AND VEGETATION: These soils are used primarily as native rangeland. Native vegetation typically is little bluestem, western wheatgrass, green needlegrass, blue grama, sideoats grama, and needleandthread. Short, limby, ponderosa pine is on some places.

DISTRIBUTION AND EXTENT: Western South Dakota and eastern Wyoming. The series is of moderate extent.

MLRA SOIL SURVEY REGIONAL OFFICE (MO) RESPONSIBLE: Denver, Colorado

SERIES ESTABLISHED: Butte County, South Dakota, 1970.

REMARKS: Diagnostic horizons and features recognized in this pedon are: ochric epipedon - the zone from the surface of the soil to a depth of 3 inches (A horizon).

National Cooperative Soil Survey
U.S.A.

LOUVIERS SERIES

The Louviers series consists of shallow, well drained soils that formed in material weathered from non-calcareous shale. Louviers soils are on hills and ridges where shale occurs close to the surface. Slopes range fromzeroto 65 percent. The mean annual precipitation is about 17 inches and the mean annual temperature is about 47 degrees F.

TAXONOMIC CLASS: Clayey, mixed, superactive, nonacid, mesic, shallow Ustic Torriorthents

TYPICAL PEDON: Louviers clay - grassland. (Colors are for dry soil unless otherwise noted.)

A--0 to 4 inches; grayish brown ($2.5 \mathrm{Y} 5 / 2$) clay, dark grayish brown ($2.5 \mathrm{Y} 4 / 2$) moist; strong very fine granular structure; slightly hard, friable, very sticky and very plastic; neutral; clear smooth boundary. (3 to 6 inches thick)

C--4 to 14 inches; grayish brown (2.5Y 5/2) clay, dark grayish brown ($2.5 \mathrm{Y} 4 / 2$) moist; massive; extremely hard, firm, very sticky and very plastic; neutral; gradual wavy boundary. (7 to 14 inches thick)
$\mathrm{Cr}-14$ to 20 inches; non-calcareous clay shale.

TYPE LOCATION: Douglas County, Colorado; 400 feet west of the NE corner of the NW1/4 of Sec. 30, T. 7 S., R. 67 W.

RANGE IN CHARACTERISTICS: Base saturation ranges from 60 to 100 percent but typically is more than 90 percent. Depth to the paralithic contact ranges from 10 to 20 inches. The control section is usually heavy clay loam or clay, and averages 35 to 60 percent clay. Rock fragments range fromzeroto 35 percent by volume, but are generally less than 5 percent. They range from $1 / 4$ to 1 inch in length.

The A horizon has hue of 5 Y through 7.5 YR , value of 5 through $7 \mathrm{dry}, 3$ through 6 moist, and chroma of 1 through 4. Reaction ranges from slightly acid to mildly alkaline.

The C horizon has hue of 5 Y through 7.5YR. Reaction ranges from slightly acid to mildly alkaline.

COMPETING SERIES: There are no other soils in this family. The Midway and Samsil soils in the same subgroup are calcareous and have montmorillonitic mineralogy.

GEOGRAPHIC SETTING: The Louviers soils are on hills and ridges where shale bedrock occurs close to the surface. Slope gradients range fromzeroto 65 percent. The soils formed in thin parent materials weathered from noncalcareous shale. At the type location the average annual precipitation is 17 inches, with peak periods of precipitation occurring in the spring and early summer. The mean annual temperature is 46 to 48 degrees F. The frost-free season is about 125 to 140 days.

GEOGRAPHICALLY ASSOCIATED SOILS: These are the Bresser and Kutch soils. Bresser soils formed in material weathered from arkose, are deeper and have a medium textured subsoil. Kutch soils have a paralithic contact at a depth of 20 to 40 inches and have a mollic epipedon.

DRAINAGE AND PERMEABILITY: Well drained; rapid runoff; slow permeability.

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7
USE AND VEGETATION: These soils are used principally as rangeland. Native vegetation is mainly blue grama, junegrass, and dryland sedge.

DISTRIBUTION AND EXTENT: Eastern and central Colorado and Wyoming. The series is of moderate extent.

MLRA SOIL SURVEY REGIONAL OFFICE (MO) RESPONSIBLE: Bozeman, Montana

SERIES ESTABLISHED: El Paso County, Colorado, 1975.

QUERC SERIES

The Querc series consists of deep, well drained soils formed in residuum and slopewash derived from acid shale. Querc soils are on lower hill and ridge slopes. Slopes are 0 to 20 percent. Mean annual temperature is about 48 degrees F., and mean annual precipitation is about 14 inches.

TAXONOMIC CLASS: Fine, smectitic, mesic Aridic Argiustolls

TYPICAL PEDON: Querc silt loam-rangeland. (Colors are for dry soil unless otherwise stated.)

A1--0 to 2 inches; grayish brown (10YR 5/2) silt loam, very dark grayish brown (10YR 3/2) molst; moderate fine granular structure; slightly hard, very friable, slightly sticky, slightly plastic; slightly acid (pH 6.1); abrupt smooth boundary. (2 to 4 inches thick)

A2--2 to 5 inches; grayish brown (10YR 5/2) silt loam, very dark grayish brown (10YR 3/2) moist; weak medium prismatic structure parting to moderate fine granular; hard, friable, slightly sticky, slightly plastic; slightly acid (pH 6.2); clear smooth boundary. (2 to 5 inches thick)

Bt--5 to 14 inches; grayish brown (10YR 5/2) silty clay loam, very dark grayish brown (10YR 3/2) moist; moderate medium prismatic structure parting to strong medium and fine subangular blocky; hard, firm, sticky, plastic; continuous clay films on faces of peds; 15 percent soft shale fragments between 2 mm . and one-fourth inch in size; slightly acid (pH 6.4); clear smooth boundary. (6 to 17 inches thick)

C--14 to 35 inches; light brownish gray ($2.5 \mathrm{Y} 6 / 2$) silty clay loam, dark grayish brown (2.5Y 4/2) moist; weak medium subangular blocky structure; hard, firm, sticky, plastic; 30 percent soft shale fragments between 2 mm . and one-fourth inch in size; slightly acid (pH 6.1); clear wavy boundary. (10 to 25 inches thick)

Cr--35 inches; soft, weathered, acid, platy, dark gray fissile shale with sulfates between the plates.

TYPE LOCATION: Crook County, Wyoming; center of sec. 9, T. 55 N., R. 60 W.

RANGE IN CHARACTERISTICS: The mean annual soil temperature is 48 to 53 degrees F. Depth to the base of the argillic horizon is 10 to 22 inches. Depth to bedded shale is 20 to 40 inches. Shale fragments range from 15 to 35 percent and are between 2 mm . and one-fourth inch in size.

2- Querc Series

The A horizon has hue of 5 Y through 10YR; chroma of 1 or 2 . It is medium acid or slightly acid.
The B2t horizon has hue of 5 Y through 10 YR , value of 5 or 6 dry and 3 or 4 moist, and chroma of 1 or 2 . It is typically a silty clay loam but may be clay loam or clay. Clay ranges from 35 to 60 percent and has more than 15 percent fine sand or coarser. It is medium acid or slightly acid.

The C horizon has hue of 2.5 Y or 10YR. Textures are normal clay loam or silty clay loam. The shale fragments break down upon pre-treatment. It is medium acid or slightly acid.

Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7
COMPETING SERIES: These are the Ashfork, Blackpipe, Boneek, Chapin, Collbran, Emigrant, Huggins, Kube, Loma, Nunn, Rednun, Richfield, Ryus, Sofia, Savo, Thunderbird, Torreon, and Wormser series. The Ashfork, Chapin, Thunderbird, and Wormser soils have a lithic contact between 20 and 40 inches. The Ashfork, Blackpipe, Boneek, Chapin, Collbran, Emigrant, Kube, Loma, Nunn, Rednun, Richfield, Ryus, Sofia, Savo, Torreon, and Wormser have free carbonates in the series control section or above 40 inches. The Boneek, Collbran, Kube, Loma, Nunn, Rednun, Richfield, Ryus, Sofia, and Torreon soils lack a paralithic contact above 40 inches. All the competing soils have reactions more alkaline than slightly acid.

GEOGRAPHIC SETTING: Querc soils are on nearly level to moderate slopes of upland ridges and hills. Slopes are 0 to 20 percent. They form in residuum weathered from acid fissile shale. Elevation is 3,200 to 5,000 feet. The annual precipitation is 12 to 16 inches. The mean annual temperature is 46 to 51 degrees F. Frost-free season is 110 to 130 days.

GEOGRAPHICALLY ASSOCIATED SOILS: These are the Graner, Grummit, Tentative Louviers, and the Tentative Maggin soils. These soils lack argillic horizons.

DRAINAGE AND PERMEABILITY: Well drained; medium runoff; slow permeability.

USE AND VEGETATION: Used for rangeland and wildlife habitat. Native vegetation is blue grama, western wheatgrass, cacti, buffalo grass, some scattered ponderosa pine, and scrub oak.

DISTRIBUTION AND EXTENT: Northeastern Wyoming. Series is of moderate extent.

MLRA SOIL SURVEY REGIONAL OFFICE (MO) RESPONSIBLE: Denver, Colorado

SERIES ESTABLISHED: Crook County, Wyoming, 1978.

National Cooperative Soil Survey
U.S.A.

SPANGLER SERIES

The Spangler series consists of moderately deep, well drained soils that formed in residuum weathered from fine grained sandstone. Slopes are 2 to 20 percent. The mean annual precipitation is about 16 inches, and the mean annual temperature is 47 degrees F.

TAXONOMIC CLASS: Fine-loamy, mixed, superactive, mesic Ustic Haplargids

TYPICAL PEDON: Spangler loam-rangeland. (Colors are for dry soil unless otherwise stated.)

A--0 to 6 inches; light brownish gray (10YR 6/2) loam, dark grayish brown (10YR 4/2) moist; moderate fine granular structure; slightly hard, friable, slightly sticky and slightly plastic; neutral (pH 6.6); clear smooth boundary. (3 to 7 inches thick)

BA--6 to 12 inches; brown (10YR 5/3) clay loam, dark yellowish brown (10YR 4/4) moist; moderate medium and fine angular blocky structure; hard, firm, sticky and plastic; neutral (pH 6.6); clear smooth boundary. (2 to 6 inches thick)

Bt--12 to 24 inches; brown (10YR 5/3) clay loam, dark yellowish brown 10YR 4/4) moist; moderate medium and fine angular blocky structure; hard, firm, sticky and plastic; thin continuous clay films on all faces of peds; neutral (pH 6.6); clear smooth boundary. (9 to 15 inches thick)

BC--24 to 30 inches; pale brown (10YR 6/3) clay loam, dark yellowish brown (10YR 4/4) moist; weak medium subangular blocky structure; hard, firm, sticky and plastic; neutral (pH 6.7); clear smooth boundary. (3 to 6 inches thick)

C--30 to 36 inches; pale brown (10YR 6/3) clay loam, dark yellowish brown (10YR 4/4) moist; weak medium subangular blocky structure; neutral (pH 6.7); abrupt wavy boundary. (3 to 8 inches thick)

Cr--36 inches; yellowish brown, slightly hard, fine grained, non-calcareous, argillaceous sandstone.

TYPE LOCATION: Crook County, Wyoming; 100 yards northeast of the southwest corner of sec. 31, T. 54 N., R. 66 W.

RANGE IN CHARACTERISTICS: The mean annual soil temperature is 47 to 52 degrees F. Depth to bedded sandstone is 20 to 40 inches. Depth to the base of the B2t horizon is 14 to 26 inches.

2-Spangler Series

The A horizon has hue of 2.5 Y or 10 YR , value of 5 or 6 dry and 3 or 4 moist, and chroma of 2 or 3 dry and moist. It is loam or sandy loam.

The Bt horizon has hue of 2.5 Y through 7.5 YR , value of 5 or 6 dry and 4 or 5 moist, and chroma of 3 through 5 dry and moist. It is clay loam or sandy clay loam and averages 27 to 35 percent clay and less than 35 percent fine sand or coarser.

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7
The C horizon has hue of 2.5 Y or 10 YR . Coarse sandstone fragments less than 3 inches in diameter range from 0 to 15 percent.

COMPETING SERIES: These are the balon, Buckle, Cambria, Cerrillos, Clovis, Cushman, Decolney, Fattig, Fernando, Fort Collins, Forkwood, Gaddes, Hagerman, Harbord, Hiland, Los Alamos, Maysdorf, Millett, Olnev, Penistaja, Pokeman, Potts, Progresso, Pugsley, Rauzi, Scholle, Spenlo, Stoneham, Sundance, Tapia and Toluca series. The balon, Buckle, Cambria, Cerillos, Clovis, Decolney, Fernando, Fort Collins, Forkwood, Harbord, Hiland, Los Alamos, Maysdorf, Millett, Olney, Penistaja, Potts, Rauzi, Scholle, Spenlo, Stoneham, Sundance, Tapia, and Toluca soils are deep. Bowbac, Cushman, and Pokeman soils are calcareous or have Bk horizons. The Fattig, Gaddes, Hagerman, and Progresso soils have a lithic contact at 20 to 40 inches. Pugsley soils have more than 35 percent fine or coarser sand in the Bt horizon.

GEOGRAPHIC SETTING: Spangler soils are on uplands. They formed in residuum weathered from argillaceous, noncalcareous sandstone. Slopes range from 2 to 20 percent. Elevation is 3,200 to 5,000 feet. The mean annual precipitation is 14 to 18 inches, most of which falls in the spring or early summer. The mean annual temperature is 45 to 50 degrees F. The frost-free season is 110 to 130 days.

GEOGRAPHICALLY ASSOCIATED SOILS: These are the Hargreave, Butche, and Norka soils. Hargreave soils have a mollic epipedon. Butche soils have a lithic contact at a depth of 10 to 20 inches. Norka soils have a ca horizon.

DRAINAGE AND PERMEABILITY: Well drained; moderate runoff; moderate permeability.

USE AND VEGETATION: Used for rangeland. Native vegetation is needleandthread grass, western wheatgrass, blue grama, and Sandberg bluegrass.

DISTRIBUTION AND EXTENT: Northeastern Wyoming within or adjacent to the Black Hills. The series is of small extent.

MLRA SOIL SURVEY REGIONAL OFFICE (MO) RESPONSIBLE: Denver, Colorado

SERIES ESTABLISHED: Crook County, Wyoming; 1978.

Addendum 2.7.3.45E

Field Profile Description Forms

Bentonite Performance Minerals, LLC

Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information -2.7

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7

Bentonite Performance Mincrals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information -2.7

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7

Bentonite Performance Mincrals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information -2.7

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information -2.7

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information -2.7

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7

Bentonite Performance Minerals, LLC

Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information -2.7

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information -2.7

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information -2.7

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information -2.7

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7

Bentonite Performance Minerals, LLC
Permit 267C - WY State Lease 42804 Amendment
Supporting Information - 2.7

Addendum 2.7.3.45F

Soil Map 2.7.3.45-1

[^0]:

[^1]:
 imit mas．Montana

 Loot6780巾LS ：al मodey

 S．668－ZL9（L0 $)$ ：पव
 －

